Technology0Identification of prognostic immune-related lncRNA signature predicting the overall survival for colorectal cancer

[ad_1]

  • Keum, N. & Giovannucci, E. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol. 16(12), 713–732. https://doi.org/10.1038/s41575-019-0189-8 (2019).

    Article 

    Google Scholar
     

  • Dekker, E., Tanis, P. J., Vleugels, J. L. A., Kasi, P. M. & Wallace, M. B. Colorectal cancer. Lancet 394(10207), 1467–1480. https://doi.org/10.1016/S0140-6736(19)32319-0 (2019).

    Article 

    Google Scholar
     

  • Miller, K. D. et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin. 69(5), 363–385 (2019).

    Article 

    Google Scholar
     

  • Coventry, B. J. & Henneberg, M. The immune system and responses to cancer: coordinated evolution. F1000Research 4, 552. https://doi.org/10.12688/f1000research.6718.3 (2015).

    Article 

    Google Scholar
     

  • Yoshihara, K. et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 4, 2612. https://doi.org/10.1038/ncomms3612 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Silver, D. J., Sinyuk, M., Vogelbaum, M. A., Ahluwalia, M. S. & Lathia, J. D. The intersection of cancer, cancer stem cells, and the immune system: Therapeutic opportunities. Neuro Oncol. 18(2), 153–159. https://doi.org/10.1093/neuonc/nov157 (2016).

    Article 

    Google Scholar
     

  • Fridman, W. H., Zitvogel, L., Sautès-Fridman, C. & Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol. 14(12), 717–734. https://doi.org/10.1038/nrclinonc.2017.101 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Yao, R. W., Wang, Y. & Chen, L. L. Cellular functions of long noncoding RNAs. Nat. Cell Biol. 21(5), 542–551. https://doi.org/10.1038/s41556-019-0311-8 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Peng, W. X., Koirala, P. & Mo, Y. Y. LncRNA-mediated regulation of cell signaling in cancer. Oncogene 36(41), 5661–5667. https://doi.org/10.1038/onc.2017.184 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Tsagakis, I., Douka, K., Birds, I. & Aspden, J. L. Long non-coding RNAs in development and disease: Conservation to mechanisms. J. Pathol. 250(5), 480–495. https://doi.org/10.1002/path.5405 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Schmitt, A. M. & Chang, H. Y. Long noncoding RNAs in cancer pathways. Cancer Cell 29(4), 452–463. https://doi.org/10.1016/j.ccell.2016.03.010 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ma, W. et al. Immune-related lncRNAs as predictors of survival in breast cancer: A prognostic signature. J. Transl. Med. 18(1), 442. https://doi.org/10.1186/s12967-020-02522-6 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Djebali, S. et al. Landscape of transcription in human cells. Nature 489(7414), 101–108. https://doi.org/10.1038/nature11233 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Pei, X., Wang, X. & Li, H. LncRNA SNHG1 regulates the differentiation of Treg cells and affects the immune escape of breast cancer via regulating miR-448/IDO. Int. J. Biol. Macromol. 118(Pt A), 24–30. https://doi.org/10.1016/j.ijbiomac.2018.06.033 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Huang, D. et al. NKILA lncRNA promotes tumor immune evasion by sensitizing T cells to activation-induced cell death. Nat. Immunol. 19(10), 1112–1125. https://doi.org/10.1038/s41590-018-0207-y (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lv, Y. et al. Landscape of cancer diagnostic biomarkers from specifically expressed genes. Brief. Bioinform. 21(6), 2175–2184. https://doi.org/10.1093/bib/bbz131 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ma, C. et al. Predicting the survival and immune landscape of colorectal cancer patients using an immune-related lncRNA pair model. Front. Genet. 12, 690530. https://doi.org/10.3389/fgene.2021.690530 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sun, M., Zhang, T., Wang, Y., Huang, W. & Xia, L. A novel signature constructed by immune-related LncRNA predicts the immune landscape of colorectal cancer. Front. Genet. 12, 695130. https://doi.org/10.3389/fgene.2021.695130 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res. 22(9), 1775–1789. https://doi.org/10.1101/gr.132159.111 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Goldman, M. J. et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 38(6), 675–678. https://doi.org/10.1038/s41587-020-0546-8 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, M. S. et al. Growth factor-independent 1 is a tumor suppressor gene in colorectal cancer. Mol. Cancer Res. 17(3), 697–708. https://doi.org/10.1158/1541-7786.MCR-18-0666 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 102(43), 15545–15550. https://doi.org/10.1073/pnas.0506580102 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, B., Wang, Q., Fu, C., Jiang, C. & Ma, S. Exploration of the immune-related signature and immune infiltration analysis for breast ductal and lobular carcinoma. Ann. Transl. Med. 7(23), 730. https://doi.org/10.21037/atm.2019.11.117 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. KEGG: Integrating viruses and cellular organisms. Nucleic Acids Res. 49(D1), D545–D551. https://doi.org/10.1093/nar/gkaa970 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Iasonos, A., Schrag, D., Raj, G. V. & Panageas, K. S. How to build and interpret a nomogram for cancer prognosis. J. Clin. Oncol. 26(8), 1364–1370. https://doi.org/10.1200/JCO.2007.12.9791 (2008).

    Article 

    Google Scholar
     

  • Plattner, C., Finotello, F. & Rieder, D. Deconvoluting tumor-infiltrating immune cells from RNA-seq data using quanTIseq. Methods Enzymol. 636, 261–285. https://doi.org/10.1016/bs.mie.2019.05.056 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160(1–2), 48–61. https://doi.org/10.1016/j.cell.2014.12.033 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Mayakonda, A., Lin, D. C., Assenov, Y., Plass, C. & Koeffler, H. P. Maftools: Efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 28(11), 1747–1756. https://doi.org/10.1101/gr.239244.118 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24(10), 1550–1558. https://doi.org/10.1038/s41591-018-0136-1 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Balachandran, V. P., Gonen, M., Smith, J. J. & DeMatteo, R. P. Nomograms in oncology: More than meets the eye. Lancet Oncol. 16(4), e173–e180. https://doi.org/10.1016/S1470-2045(14)71116-7 (2015).

    Article 

    Google Scholar
     

  • Akgül, Ö., Çetinkaya, E., Ersöz, Ş & Tez, M. Role of surgery in colorectal cancer liver metastases. World J. Gastroenterol. 20(20), 6113–6122. https://doi.org/10.3748/wjg.v20.i20.6113 (2014).

    Article 

    Google Scholar
     

  • Abbott, M. & Ustoyev, Y. Cancer and the immune system: The history and background of immunotherapy. Semin. Oncol. Nurs. 35(5), 150923. https://doi.org/10.1016/j.soncn.2019.08.002 (2019).

    Article 

    Google Scholar
     

  • Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion. Science 331(6024), 1565–1570. https://doi.org/10.1126/science.1203486 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Bergman, P. J. Cancer immunotherapies. Vet. Clin. N. Am. Small Anim. Pract. 49(5), 881–902. https://doi.org/10.1016/j.cvsm.2019.04.010 (2019).

    Article 

    Google Scholar
     

  • Mu, M. et al. Effect of different expression of immune-related lncRNA on colon adenocarcinoma and its relation to prognosis. Biomed. Res. Int. 2020, 6942740. https://doi.org/10.1155/2020/6942740 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lizardo, D. Y. et al. Immunotherapy efficacy on mismatch repair-deficient colorectal cancer: From bench to bedside. Biochim. Biophys. Acta Rev. Cancer. 1874(2), 188447. https://doi.org/10.1016/j.bbcan.2020.188447 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ganesh, K. et al. Immunotherapy in colorectal cancer: Rationale, challenges and potential. Nat. Rev. Gastroenterol. Hepatol. 16(6), 361–375. https://doi.org/10.1038/s41575-019-0126-x (2019).

    Article 

    Google Scholar
     

  • Xu, M. et al. LncRNA SATB2-AS1 inhibits tumor metastasis and affects the tumor immune cell microenvironment in colorectal cancer by regulating SATB2. Mol. Cancer 18(1), 135. https://doi.org/10.1186/s12943-019-1063-6 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Q. M., Lian, G. Y., Song, Y., Huang, Y. F. & Gong, Y. LncRNA MALAT1 promotes tumorigenesis and immune escape of diffuse large B cell lymphoma by sponging miR-195. Life Sci. 231, 116335. https://doi.org/10.1016/j.lfs.2019.03.040 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, M. et al. LncRNA GATA3-AS1 facilitates tumour progression and immune escape in triple-negative breast cancer through destabilization of GATA3 but stabilization of PD-L1. Cell Prolif. 53(9), e12855. https://doi.org/10.1111/cpr.12855 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, K. L. et al. LncRNA SNHG7 is an oncogenic biomarker interacting with microRNA-193b in colon carcinogenesis. Clin. Lab. 65(11), 190501. https://doi.org/10.7754/Clin.Lab.2019.190501 (2019).

    Article 

    Google Scholar
     

  • Li, Y. et al. Long non-coding RNA-SNHG7 acts as a target of miR-34a to increase GALNT7 level and regulate PI3K/Akt/mTOR pathway in colorectal cancer progression. J. Hematol. Oncol. 11(1), 89. https://doi.org/10.1186/s13045-018-0632-2 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Fu, J. & Cui, Y. Long noncoding RNA ZEB1-AS1 expression predicts progression and poor prognosis of colorectal cancer. Int. J. Biol. Mark. 32(4), e428–e433. https://doi.org/10.5301/ijbm.5000303 (2017).

    Article 

    Google Scholar
     

  • Lv, S. Y. et al. The lncRNA ZEB1-AS1 sponges miR-181a-5p to promote colorectal cancer cell proliferation by regulating Wnt/β-catenin signaling. Cell Cycle 17(10), 1245–1254. https://doi.org/10.1080/15384101.2018.1471317 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, H. et al. LncRNA HCG11 promotes proliferation and migration in gastric cancer via targeting miR-1276/CTNNB1 and activating Wnt signaling pathway. Cancer Cell Int. 19, 350. https://doi.org/10.1186/s12935-019-1046-0 (2019).

    Article 

    Google Scholar
     

  • Zhou, Y. X. et al. Long non-coding RNA NIFK-AS1 inhibits M2 polarization of macrophages in endometrial cancer through targeting miR-146a. Int. J. Biochem. Cell Biol. 104, 25–33. https://doi.org/10.1016/j.biocel.2018.08.017 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y. et al. Identification of immune-related LncRNA for predicting prognosis and immunotherapeutic response in bladder cancer. Aging (Albany N.Y.) 12(22), 23306–23325. https://doi.org/10.18632/aging.104115 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Patel, M., Horgan, P. G., McMillan, D. C. & Edwards, J. NF-κB pathways in the development and progression of colorectal cancer. Transl. Res. 197, 43–56. https://doi.org/10.1016/j.trsl.2018.02.002 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Cabal-Hierro, L. & O’Dwyer, P. J. TNF signaling through RIP1 kinase enhances SN38-induced death in colon adenocarcinoma. Mol. Cancer Res. 15(4), 395–404. https://doi.org/10.1158/1541-7786.MCR-16-0329 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Matsumura, T. et al. Fascin1 suppresses RIG-I-like receptor signaling and interferon-β production by associating with IκB kinase ϵ (IKKϵ) in colon cancer. J. Biol. Chem. 293(17), 6326–6336. https://doi.org/10.1074/jbc.M117.819201 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chen, J. et al. IL-17 inhibits CXCL9/10-mediated recruitment of CD8+ cytotoxic T cells and regulatory T cells to colorectal tumors. J. Immunother. Cancer 7(1), 324. https://doi.org/10.1186/s40425-019-0757-z (2019).

    Article 

    Google Scholar
     

  • Jiang, L. et al. Long non-coding RNA RP11-468E2.5 curtails colorectal cancer cell proliferation and stimulates apoptosis via the JAK/STAT signaling pathway by targeting STAT5 and STAT6. J. Exp. Clin. Cancer Res. 38(1), 465. https://doi.org/10.1186/s13046-019-1428-0 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Guo, L., Wang, C., Qiu, X., Pu, X. & Chang, P. Colorectal cancer immune infiltrates: Significance in patient prognosis and immunotherapeutic efficacy. Front. Immunol. 11, 1052. https://doi.org/10.3389/fimmu.2020.01052 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kumar, V. et al. Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell 32(5), 654–668. https://doi.org/10.1016/j.ccell.2017.10.005 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Picard, E., Verschoor, C. P., Ma, G. W. & Pawelec, G. Relationships between immune landscapes, genetic subtypes and responses to immunotherapy in colorectal cancer. Front. Immunol. 11, 369. https://doi.org/10.3389/fimmu.2020.00369 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Khalaf, K. et al. Aspects of the tumor microenvironment involved in immune resistance and drug resistance. Front. Immunol. 12, 656364. https://doi.org/10.3389/fimmu.2021.656364 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20(3), 174–186. https://doi.org/10.1038/s41568-019-0238-1 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Paauwe, M. et al. Endoglin expression on cancer-associated fibroblasts regulates invasion and stimulates colorectal cancer metastasis. Clin. Cancer Res. 24(24), 6331–6344. https://doi.org/10.1158/1078-0432.CCR-18-0329 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gonçalves-Ribeiro, S. et al. Carcinoma-associated fibroblasts affect sensitivity to oxaliplatin and 5FU in colorectal cancer cells. Oncotarget 7(37), 59766–59780. https://doi.org/10.18632/oncotarget.11121 (2016).

    Article 

    Google Scholar
     

  • Gordon, S. R. et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545(7655), 495–499. https://doi.org/10.1038/nature22396 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Xiong, Y. et al. Profiles of immune infiltration in colorectal cancer and their clinical significant: A gene expression-based study. Cancer Med. 7(9), 4496–4508. https://doi.org/10.1002/cam4.1745 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Waniczek, D. et al. Tumor-associated macrophages and regulatory T cells infiltration and the clinical outcome in colorectal cancer. Arch. Immunol. Ther. Exp. (Warsz) 65(5), 445–454. https://doi.org/10.1007/s00005-017-0463-9 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Jayakumar, A. & Bothwell, A. L. M. RIPK3-induced inflammation by I-MDSCs promotes intestinal tumors. Cancer Res. 79(7), 1587–1599. https://doi.org/10.1158/0008-5472.CAN-18-2153 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Schrock, A. B. et al. Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer. Ann. Oncol. 30(7), 1096–1103. https://doi.org/10.1093/annonc/mdz134 (2019).

    Article 
    CAS 

    Google Scholar
     

  • McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351(6280), 1463–1469. https://doi.org/10.1126/science.aaf1490 (2016).

    Article 
    CAS 

    Google Scholar
     

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *