Recurrent RNA edits in human preimplantation potentially enhance maternal mRNA clearance


  • Theunissen, T. W. & Jaenisch, R. Mechanisms of gene regulation in human embryos and pluripotent stem cells. Development 144, 4496–4509 (2017).

    CAS 

    Google Scholar
     

  • Kontur, C., Jeong, M., Cifuentes, D. & Giraldez, A. J. Ythdf m6A readers function redundantly during zebrafish development. Cell Rep. 33, 108598 (2020).

    CAS 

    Google Scholar
     

  • Morgan, M. et al. mRNA 3’ uridylation and poly(A) tail length sculpt the mammalian maternal transcriptome. Nature 548, 347–351 (2017).

    CAS 

    Google Scholar
     

  • Chang, H. et al. Terminal uridylyltransferases execute programmed clearance of maternal transcriptome in vertebrate embryos. Mol Cell 70, 72–82.e7 (2018).


    Google Scholar
     

  • Sha, Q. Q. et al. Dynamics and clinical relevance of maternal mRNA clearance during the oocyte-to-embryo transition in humans. Nat. Commun. 11, 4917 (2020).

    CAS 

    Google Scholar
     

  • Brachova, P., Alvarez, N. S. & Christenson, L. K. Loss of Cnot6l impairs inosine RNA modifications in mouse oocytes. Int. J. Mol. Sci. 22, 1191 (2021).

  • Eisenberg, E. & Levanon, E. Y. A-to-I RNA editing – immune protector and transcriptome diversifier. Nat. Rev. Genet. 19, 473–490 (2018).

    CAS 

    Google Scholar
     

  • Hoopengardner, B., Bhalla, T., Staber, C. & Reenan, R. Nervous system targets of RNA editing identified by comparative genomics. Science 301, 832–836 (2003).

    CAS 

    Google Scholar
     

  • Lev-Maor, G. et al. RNA-editing-mediated exon evolution. Genome Biol. 8, R29 (2007).


    Google Scholar
     

  • Kawahara, Y. et al. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315, 1137–1140 (2007).

    CAS 

    Google Scholar
     

  • Pinto, Y., Buchumenski, I., Levanon, E. Y. & Eisenberg, E. Human cancer tissues exhibit reduced A-to-I editing of miRNAs coupled with elevated editing of their targets. Nucleic Acids Res. 46, 71–82 (2018).

    CAS 

    Google Scholar
     

  • Liddicoat, B. J. et al. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349, 1115–1120 (2015).

    CAS 

    Google Scholar
     

  • Costa Cruz, P. H. & Kawahara, Y. RNA editing in neurological and neurodegenerative disorders. Methods Mol. Biol. 2181, 309–330 (2021).

    CAS 

    Google Scholar
     

  • Li, J. B. et al. Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science 324, 1210–1213 (2009).

    CAS 

    Google Scholar
     

  • Paz-Yaacov, N. et al. Adenosine-to-inosine RNA editing shapes transcriptome diversity in primates. Proc Natl Acad Sci USA 107, 12174–12179 (2010).

    CAS 

    Google Scholar
     

  • Bahn, J. H. et al. Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome Res. 22, 142–150 (2012).

    CAS 

    Google Scholar
     

  • Ramaswami, G. et al. Accurate identification of human Alu and non-Alu RNA editing sites. Nat. Methods 9, 579–581 (2012).

    CAS 

    Google Scholar
     

  • Ramaswami, G. et al. Identifying RNA editing sites using RNA sequencing data alone. Nat. Methods 10, 128–132 (2013).

    CAS 

    Google Scholar
     

  • Peng, Z. et al. Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome. Nat. Biotechnol. 30, 253–260 (2012).

    CAS 

    Google Scholar
     

  • Daniel, C., Silberberg, G., Behm, M. & Öhman, M. Alu elements shape the primate transcriptome by cis-regulation of RNA editing. Genome Biol. 15, R28 (2014).


    Google Scholar
     

  • Tan, M. H. et al. Dynamic landscape and regulation of RNA editing in mammals. Nature 550, 249–254 (2017).


    Google Scholar
     

  • Mansi, L. et al. REDIportal: millions of novel A-to-I RNA editing events from thousands of RNAseq experiments. Nucleic Acids Res. 49, D1012–D1019 (2021).

    CAS 

    Google Scholar
     

  • Qiu, S. et al. Single-cell RNA sequencing reveals dynamic changes in A-to-I RNA editome during early human embryogenesis. BMC Genomics 17, 766 (2016).


    Google Scholar
     

  • Li, T. et al. Pig-specific RNA editing during early embryo development revealed by genome-wide comparisons. FEBS Open Bio. 10, 1389–1402 (2020).

    CAS 

    Google Scholar
     

  • Qiu, J., Ma, X., Zeng, F. & Yan, J. RNA editing regulates lncRNA splicing in human early embryo development. PLoS Comput. Biol. 17, e1009630 (2021).

    CAS 

    Google Scholar
     

  • Batzer, M. A. & Deininger, P. L. Alu repeats and human genomic diversity. Nat Rev. Genet. 3, 370–379 (2002).

    CAS 

    Google Scholar
     

  • Daniel, C., Behm, M. & Öhman, M. The role of Alu elements in the cis-regulation of RNA processing. Cell Mol. Life Sci. 72, 4063–4076 (2015).

    CAS 

    Google Scholar
     

  • Schaffer, A. A. & Levanon, E. Y. ALU A-to-I RNA editing: millions of sites and many open questions. Methods Mol. Biol. 2181, 149–162 (2021).

    CAS 

    Google Scholar
     

  • Buchumenski, I. et al. Systematic identification of A-to-I RNA editing in zebrafish development and adult organs. Nucleic Acids Res. 49, 4325–4337 (2021).

    CAS 

    Google Scholar
     

  • Barrett, T. et al. NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 41, D991–D995 (2013).

    CAS 

    Google Scholar
     

  • NHLBI GO Exome Sequencing Project (ESP). Exome variant server. http://evs.gs.washington.edu/EVS/ [Nov, 2020 accessed] (2020).

  • Phan, L. et al. ALFA: allele frequency aggregator. https://www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa/ (2020).

  • Consortium, G. P. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).


    Google Scholar
     

  • Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    CAS 

    Google Scholar
     

  • Ding, J., Lin, C. & Bar-Joseph, Z. Cell lineage inference from SNP and scRNA-Seq data. Nucleic Acids Res. 47, e56 (2019).

    CAS 

    Google Scholar
     

  • Roth, S. H., Levanon, E. Y. & Eisenberg, E. Genome-wide quantification of ADAR adenosine-to-inosine RNA editing activity. Nat. Methods 16, 1131–1138 (2019).

    CAS 

    Google Scholar
     

  • Levanon, E. Y. et al. Evolutionarily conserved human targets of adenosine to inosine RNA editing. Nucleic Acids Res. 33, 1162–1168 (2005).

    CAS 

    Google Scholar
     

  • Leng, L. et al. Single-cell transcriptome analysis of uniparental embryos reveals parent-of-origin effects on human preimplantation development. Cell Stem Cell 25, 697–712.e6 (2019).


    Google Scholar
     

  • Reyes, J. M. et al. Differing molecular response of young and advanced maternal age human oocytes to IVM. Hum. Reprod. 32, 2199–2208 (2017).

    CAS 

    Google Scholar
     

  • Okada, Y., Yamagata, K., Hong, K., Wakayama, T. & Zhang, Y. A role for the elongator complex in zygotic paternal genome demethylation. Nature 463, 554–558 (2010).

    CAS 

    Google Scholar
     

  • Ding, Y. Supplementary IGV data for human embryonic RNA editome. https://doi.org/10.5281/zenodo.7379397 (2022).

  • Marco, A. Clearance of maternal RNAs: not a mummy’s embryo anymore. Methods Mol. Biol. 1605, 1–10 (2017).

    CAS 

    Google Scholar
     

  • Gonzalez, C., Lopez-Rodriguez, A., Srikumar, D., Rosenthal, J. J. & Holmgren, M. Editing of human K(V)1.1 channel mRNAs disrupts binding of the N-terminus tip at the intracellular cavity. Nat. Commun. 2, 436 (2011).


    Google Scholar
     

  • Hu, X. et al. RNA over-editing of BLCAP contributes to hepatocarcinogenesis identified by whole-genome and transcriptome sequencing. Cancer Lett. 357, 510–519 (2015).

    CAS 

    Google Scholar
     

  • Chen, L. et al. Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nat. Med. 19, 209–216 (2013).


    Google Scholar
     

  • Jiang, Q. et al. ADAR1 promotes malignant progenitor reprogramming in chronic myeloid leukemia. Proc Natl Acad Sci USA 110, 1041–1046 (2013).

    CAS 

    Google Scholar
     

  • Zhou, S. et al. Double-stranded RNA deaminase ADAR1 promotes the Zika virus replication by inhibiting the activation of protein kinase PKR. J. Biol. Chem. 294, 18168–18180 (2019).

    CAS 

    Google Scholar
     

  • Stellos, K. et al. Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation. Nat. Med. 22, 1140–1150 (2016).

    CAS 

    Google Scholar
     

  • Lazzari, E. et al. Alu-dependent RNA editing of GLI1 promotes malignant regeneration in multiple myeloma. Nat. Commun. 8, 1922 (2017).


    Google Scholar
     

  • Zhao, B. S. et al. m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature 542, 475–478 (2017).

    CAS 

    Google Scholar
     

  • Yu, C. et al. BTG4 is a meiotic cell cycle-coupled maternal-zygotic-transition licensing factor in oocytes. Nat. Struct. Mol. Biol. 23, 387–394 (2016).

    CAS 

    Google Scholar
     

  • Ivanova, I. et al. The RNA m6A reader YTHDF2 is essential for the post-transcriptional regulation of the maternal transcriptome and oocyte competence. Mol. Cell 67, 1059–1067.e4 (2017).


    Google Scholar
     

  • Wahle, E. & Winkler, G. S. RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes. Biochim. Biophys. Acta 1829, 561–570 (2013).

    CAS 

    Google Scholar
     

  • Braun, J. E., Huntzinger, E., Fauser, M. & Izaurralde, E. GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol. Cell 44, 120–133 (2011).

    CAS 

    Google Scholar
     

  • Fabian, M. R. et al. miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4-NOT. Nat. Struct. Mol. Biol. 18, 1211–1217 (2011).

    CAS 

    Google Scholar
     

  • Chekulaeva, M. et al. miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs. Nat. Struct. Mol. Biol. 18, 1218–1226 (2011).

    CAS 

    Google Scholar
     

  • Ma, J., Fukuda, Y. & Schultz, R. M. Mobilization of dormant Cnot7 mRNA promotes deadenylation of maternal transcripts during mouse oocyte maturation. Biol. Reprod. 93, 48 (2015).


    Google Scholar
     

  • Hagkarim, N. C. & Grand, R. J. The regulatory properties of the Ccr4-not complex. Cells 9, 2379 (2020).

  • Fasken, M. B. et al. The RNA exosome and human disease. Methods Mol. Biol. 2062, 3–33 (2020).

    CAS 

    Google Scholar
     

  • Evers, R. & Grummt, I. Molecular coevolution of mammalian ribosomal gene terminator sequences and the transcription termination factor TTF-I. Proc Natl Acad Sci USA 92, 5827–5831 (1995).

    CAS 

    Google Scholar
     

  • Kim, D. D. et al. Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res. 14, 1719–1725 (2004).

    CAS 

    Google Scholar
     

  • Zhu, Y., Davis, S., Stephens, R., Meltzer, P. S. & Chen, Y. GEOmetadb: powerful alternative search engine for the Gene Expression Omnibus. Bioinformatics 24, 2798–2800 (2008).

    CAS 

    Google Scholar
     

  • Lo Giudice, C., Tangaro, M. A., Pesole, G. & Picardi, E. Investigating RNA editing in deep transcriptome datasets with REDItools and REDIportal. Nat. Protoc. 15, 1098–1131 (2020).

    CAS 

    Google Scholar
     

  • Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019).

    CAS 

    Google Scholar
     

  • DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    CAS 

    Google Scholar
     

  • Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001).

    CAS 

    Google Scholar
     

  • Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).

    CAS 

    Google Scholar
     

  • Zachariadis, V., Cheng, H., Andrews, N. & Enge, M. A highly scalable method for joint whole-genome sequencing and gene-expression profiling of single cells. Mol. Cell 80, 541–553.e5 (2020).


    Google Scholar
     

  • Macaulay, I. C. et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat. Methods 12, 519–522 (2015).

    CAS 

    Google Scholar
     

  • Vacic, V., Iakoucheva, L. M. & Radivojac, P. Two sample logo: a graphical representation of the differences between two sets of sequence alignments. Bioinformatics 22, 1536–1537 (2006).

    CAS 

    Google Scholar
     

  • Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    CAS 

    Google Scholar
     

  • Carlson, M. org.Hs.eg.db: Genome wide annotation for human (2019).

  • Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    CAS 

    Google Scholar
     

  • Enright, A. J. et al. MicroRNA targets in Drosophila. Genome Biol. 5, R1 (2003).


    Google Scholar
     

  • Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46, W537–W544 (2018).

    CAS 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 

    Google Scholar
     

  • Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    CAS 

    Google Scholar
     

  • Yan, L. et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol. 20, 1131–1139 (2013).

    CAS 

    Google Scholar
     

  • Xue, Z. et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500, 593–597 (2013).

    CAS 

    Google Scholar
     

  • Guo, H. et al. The DNA methylation landscape of human early embryos. Nature 511, 606–610 (2014).

    CAS 

    Google Scholar
     

  • Yanez, L. Z., Han, J., Behr, B. B., Pera, R. A. R. & Camarillo, D. B. Human oocyte developmental potential is predicted by mechanical properties within hours after fertilization. Nat. Commun. 7, 10809 (2016).

    CAS 

    Google Scholar
     

  • Dang, Y. et al. Tracing the expression of circular RNAs in human pre-implantation embryos. Genome Biol. 17, 130 (2016).


    Google Scholar
     

  • Hendrickson, P. G. et al. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nat. Genet. 49, 925–934 (2017).

    CAS 

    Google Scholar
     

  • Fogarty, N. M. E. et al. Genome editing reveals a role for OCT4 in human embryogenesis. Nature 550, 67–73 (2017).

    CAS 

    Google Scholar
     

  • Wu, J. et al. Chromatin analysis in human early development reveals epigenetic transition during ZGA. Nature 557, 256–260 (2018).

    CAS 

    Google Scholar
     

  • Lv, B. et al. Single-cell RNA sequencing reveals regulatory mechanism for trophoblast cell-fate divergence in human peri-implantation conceptuses. PLoS Biol. 17, e3000187 (2019).

    CAS 

    Google Scholar
     

  • Wamaitha, S. E. et al. IGF1-mediated human embryonic stem cell self-renewal recapitulates the embryonic niche. Nat. Commun. 11, 764 (2020).

    CAS 

    Google Scholar
     

  • West, R. C. et al. Dynamics of trophoblast differentiation in peri-implantation-stage human embryos. Proc Natl Acad Sci USA 116, 22635–22644 (2019).

    CAS 

    Google Scholar
     

  • Xiang, L. et al. A developmental landscape of 3D-cultured human pre-gastrulation embryos. Nature 577, 537–542 (2020).

    CAS 

    Google Scholar
     

  • Cacchiarelli, D. et al. Integrative analyses of human reprogramming reveal dynamic nature of induced pluripotency. Cell 162, 412–424 (2015).

    CAS 

    Google Scholar
     

  • Szabo, L. et al. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol. 16, 126 (2015).


    Google Scholar
     

  • Choi, J. et al. A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs. Nat. Biotechnol. 33, 1173–1181 (2015).

    CAS 

    Google Scholar
     

  • Lau, K. X. et al. Unique properties of a subset of human pluripotent stem cells with high capacity for self-renewal. Nat. Commun. 11, 2420 (2020).

    CAS 

    Google Scholar
     

  • Ding, Y. Human embryonic rna editome. Zenodo https://doi.org/10.5281/zenodo.6658521 (2022).

  • Ding, Y. Code for human embryonic rna editome. https://doi.org/10.5281/zenodo.7386496 (2022).

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).



  • Source link

    Share

    Leave a Reply

    Your email address will not be published. Required fields are marked *