Microarray analysis identifies coding and non-coding RNA markers of liver injury in whole body irradiated mice


  • Montay-Gruel, P., Meziani, L., Yakkala, C. & Vozenin, M. Expanding the therapeutic index of radiation therapy by normal tissue protection. Br. J. Radiol. 92(1093), 20180008 (2019).


    Google Scholar
     

  • Kim, J., Jenrow, K. & Brown, S. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials. Radiat. Oncol. J. 32(3), 103–115 (2014).

    Article 

    Google Scholar
     

  • Preston, D. L. et al. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat. Res. 168(1), 1–64 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Akahoshi, M. et al. Effects of radiation on fatty liver and metabolic coronary risk factors among atomic bomb survivors in Nagasaki. Hypertens. Res. 26(12), 965–970 (2003).

    Article 

    Google Scholar
     

  • Tanaka, H., Hayashi, S., Ohtakara, K. & Hoshi, H. Hepatic dysfunction after radiotherapy for primary gastric lymphoma. J. Radiat. Res. 54(1), 92–97 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Klein, J. et al. Stereotactic body radiotherapy: An effective local treatment modality for hepatocellular carcinoma. Fut. Oncol. 10(14), 2227–2241 (2014).

    Article 

    Google Scholar
     

  • Tomita, Y. et al. High incidence of fatty liver and insulin resistance in long-term adult survivors of childhood SCT. Bone Marrow Transpl. 46(3), 416–425 (2011).

    Article 

    Google Scholar
     

  • Guha, C., Sharma, A., Gupta, S., Alfieri, A., Gorla, G., Gagandeep, S. et al. Amelioration of Radiation-induced Liver Damage in Partially Hepatectomized Rats by Hepatocyte Transplantation | Cancer Research [Internet]. (1999) [cited 2022 Feb 4]. Available from: https://cancerres.aacrjournals.org/content/59/23/5871#sec-2

  • Jiang, L. et al. Proteomic analysis of radiation-induced acute liver damage in a rabbit model. Dose Response. 17(4), 1559325819889508 (2019).

    Article 

    Google Scholar
     

  • Zhu, W., Zhang, X., Yu, M., Lin, B. & Yu, C. Radiation-induced liver injury and hepatocyte senescence. Cell Death Discov. 7(1), 1–9 (2021).

    Article 

    Google Scholar
     

  • Kjærgaard, K. et al. Hepatic regeneration following radiation-induced liver injury is associated with increased hepatobiliary secretion measured by PET in Göttingen minipigs. Sci. Rep. 10(1), 1–10 (2020).

    Article 

    Google Scholar
     

  • Radwan, R. R. & Hasan, H. F. Pioglitazone ameliorates hepatic damage in irradiated rats via regulating anti-inflammatory and antifibrogenic signalling pathways. Free Radic. Res. 53(7), 748–757. https://doi.org/10.1080/1071576220191624742 (2019).

    Article 

    Google Scholar
     

  • Huang, Y. et al. Clinical parameters for predicting radiation-induced liver disease after intrahepatic reirradiation for hepatocellular carcinoma. Radiat. Oncol. 11(1), 1–9 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Chen, Y. X. et al. Mesenchymal stem cell–conditioned medium prevents radiation-induced liver injury by inhibiting inflammation and protecting sinusoidal endothelial cells. J. Radiat. Res. 56(4), 700–708 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Toesca, D. A. S. et al. Strategies for prediction and mitigation of radiation-induced liver toxicity. J. Radiat. Res. 59(Suppl_1), i40–i49 (2018).

    Article 

    Google Scholar
     

  • Wang, S. et al. Potential role of hedgehog pathway in liver response to radiation. PLoS ONE 8(9), e74141 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Kim, J. & Jung, Y. Radiation-induced liver disease: Current understanding and future perspectives. In Experimental and Molecular Medicine Vol. 49 e359 (Nature Publishing Group, 2017).


    Google Scholar
     

  • Liang, S. X. et al. Radiation-induced liver disease in three-dimensional conformal radiation therapy for primary liver carcinoma: The risk factors and hepatic radiation tolerance. Int. J. Radiat. Oncol. Biol. Phys. 65(2), 426–434 (2006).

    Article 

    Google Scholar
     

  • Rothkamm, K. et al. Comparison of established and emerging biodosimetry assays. Radiat. Res. 180(2), 111–119 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Podralska, M. et al. Non-coding RNAs in cancer radiosensitivity: MicroRNAs and lncrnas as regulators of radiation-induced signaling pathways. Cancers (Basel). 12(6), 1–27 (2020).

    Article 

    Google Scholar
     

  • Lee, KF. Chen, YC., Hsu, PW., Liu, IY., Wu, LS. MicroRNA expression profiling altered by variant dosage of radiation exposure. Biomed. Res. Int. 2014 (2014).

  • May, J. M., Bylicky, M., Chopra, S., Coleman, C. N. & Aryankalayil, M. J. Long and short non-coding RNA and radiation response: A review. Transl. Res. 233, 162–179 (2021).

    Article 

    Google Scholar
     

  • John Liu, S. et al. CRISPRi-based radiation modifier screen identifies long non-coding RNA therapeutic targets in glioma. Genome Biol. 21(1), 1–18 (2020).


    Google Scholar
     

  • Viereck, J. & Thum, T. Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circ. Res. 120(2), 381–399 (2017).

    Article 

    Google Scholar
     

  • Aryankalayil, M. J. et al. Analysis of lncRNA-miRNA-mRNA expression pattern in heart tissue after total body radiation in a mouse model. J. Transl. Med. 19(1), 336 (2021).

    Article 

    Google Scholar
     

  • Schmitt, A. M. et al. An inducible long noncoding RNA amplifies DNA damage signaling. Nat. Genet. 48(11), 1370 (2016).

    Article 

    Google Scholar
     

  • Beer, L. et al. Ionizing radiation regulates long non-coding RNAs in human peripheral blood mononuclear cells. J. Radiat. Res. 58(2), 201–209 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Aryankalayil, M. J. et al. Radiation-induced long noncoding rnas in a mouse model after whole-body irradiation. Radiat. Res. 189(3), 251–263 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Fendler, W. et al. Evolutionarily conserved serum microRNAs predict radiation-induced fatality in nonhuman primates. Sci. Transl. Med. 9(379), 1–12 (2017).

    Article 

    Google Scholar
     

  • Glinge, C. et al. Stability of circulating blood-based microRNAs – pre-analytic methodological considerations. PLoS ONE 12(2), e0167969 (2017).

    Article 

    Google Scholar
     

  • Balzano, F. et al. miRNA stability in frozen plasma samples. Molecules 20(10), 19030–19040 (2015).

    Article 

    Google Scholar
     

  • Li, Y. et al. Identification of lncRNA, MicroRNA, and mRNA-Associated CeRNA network of radiation-induced lung injury in a mice model. Dose Response. 17(4), 1559325819891012 (2019).

    Article 

    Google Scholar
     

  • Aryankalayil, M. J. et al. Microarray analysis of miRNA expression profiles following whole body irradiation in a mouse model. Biomarkers 23(7), 689–703 (2018).

    Article 

    Google Scholar
     

  • Price, J. G. et al. CDKN1A regulates Langerhans cell survival and promotes Treg cell generation upon exposure to ionizing irradiation. Nat Immunol. 16(10), 1060–1068 (2015).

    Article 

    Google Scholar
     

  • Ghandhi, S. A., Smilenov, L., Shuryak, I., Pujol-Canadell, M. & Amundson, S. A. Discordant gene responses to radiation in humans and mice and the role of hematopoietically humanized mice in the search for radiation biomarkers. Sci. Rep. 9(1), 1–13 (2019).

    Article 

    Google Scholar
     

  • Himburg, H. et al. A molecular profile of the endothelial cell response to ionizing radiation. Radiat. Res. 186(2), 141–152 (2016).

    Article 
    ADS 

    Google Scholar
     

  • van de Vosse, E., van Dissel, J. T. & Ottenhoff, T. H. Genetic deficiencies of innate immune signalling in human infectious disease. Lancet Infect Dis. 9(11), 688–698 (2009).

    Article 

    Google Scholar
     

  • Kawase, T. et al. PH domain-only protein PHLDA3 is a p53-regulated repressor of Akt. Cell 136(3), 535–550 (2009).

    Article 

    Google Scholar
     

  • Hsiao, C., Reddy, S., Chen, M. & Saligan, L. Genomic profile of fatigued men receiving localized radiation therapy. Biol. Res. Nurs. 18(3), 281–289 (2016).

    Article 

    Google Scholar
     

  • Sun, Z. et al. An RNA-seq-based expression profiling of radiation-induced esophageal injury in a rat model. Dose Response 17(2), 1559325819843373 (2019).

    Article 

    Google Scholar
     

  • Azimzadeh, O. et al. Chronic occupational exposure to ionizing radiation induces alterations in the structure and metabolism of the heart: A proteomic analysis of human formalin-fixed paraffin-embedded (FFPE) cardiac tissue. Int J Mol Sci. 21(18), 1–21 (2020).

    Article 

    Google Scholar
     

  • Roudkenar, M. H. et al. Gene expression profiles in mouse liver cells after exposure to different types of radiation. J. Radiat. Res. 49(1), 29–40 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Pervin, M., Unno, K., Konishi, T. & Nakamura, Y. L-arginine exerts excellent anti-stress effects on stress-induced shortened lifespan, cognitive decline and depression. Int. J. Mol. Sci. 22(2), 508 (2021).

    Article 

    Google Scholar
     

  • Kalousi, A. et al. The nuclear oncogene SET controls DNA repair by KAP1 and HP1 retention to chromatin. Cell Rep. 11(1), 149–163 (2015).

    Article 

    Google Scholar
     

  • Pérez-Castro, A. J. & Freire, R. Rad9B responds to nucleolar stress through ATR and JNK signalling, and delays the G1–S transition. J. Cell Sci. 125(5), 1152–1164 (2012).

    Article 

    Google Scholar
     

  • Nalesso, G. et al. WNT16 antagonises excessive canonical WNT activation and protects cartilage in osteoarthritis. Ann. Rheum. Dis. 76(1), 218–226 (2017).

    Article 

    Google Scholar
     

  • Khozouz, R. F., Huq, S. Z. & Perry, M. C. Radiation-induced liver disease. J. Clin. Oncol. 26(29), 4844–4845 (2008).

    Article 

    Google Scholar
     

  • Lee, I. J., Seong, J., Shim, S. J. & Han, K. H. Radiotherapeutic parameters predictive of liver complications induced by liver tumor radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 73(1), 154–158 (2009).

    Article 

    Google Scholar
     

  • Lawrence, T. S. et al. Hepatic toxicity resulting from cancer treatment. Int. J. Radiat. Oncol. Biol. Phys. 31(5), 1237–1248 (1995).

    Article 

    Google Scholar
     

  • Chiba, M. et al. Serum miR-375-3p increase in mice exposed to a high dose of ionizing radiation. Sci. Rep. 8(1), 1–11 (2018).

    Article 

    Google Scholar
     

  • Macaeva, E., Mysara, M., De Vos, W. H., Baatout, S. & Quintens, R. Gene expression-based biodosimetry for radiological incidents: Assessment of dose and time after radiation exposure. Int. J. Radiat. Biol. 95(1), 64–75 (2019).

    Article 

    Google Scholar
     

  • Lindeman, L. C. et al. Gamma radiation induces locus specific changes to histone modification enrichment in zebrafish and Atlantic salmon. PLoS ONE 14(2), e0212123 (2019).

    Article 

    Google Scholar
     

  • Juárez-Hernández, E. et al. Association between serum hemoglobin levels and non alcoholic fatty liver disease in a mexican population. Ann. Hepatol. 17(4), 577–584 (2018).

    Article 

    Google Scholar
     

  • Chung, G. et al. Associations between hemoglobin concentrations and the development of incidental metabolic syndrome or nonalcoholic fatty liver disease. Dig Liver Dis. 49(1), 57–62 (2017).

    Article 

    Google Scholar
     

  • Giorgio, V. et al. Elevated hemoglobin level is associated with advanced fibrosis in pediatric nonalcoholic fatty liver disease. J. Pediatr. Gastroenterol. Nutr. 65(2), 150–155 (2017).

    Article 

    Google Scholar
     

  • Liu, W., Baker, S., Baker, R., Nowak, N. & Zhu, L. Upregulation of hemoglobin expression by oxidative stress in hepatocytes and its implication in nonalcoholic steatohepatitis. PLoS ONE 6(9), e24363 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Brosh, R. et al. p53-dependent transcriptional regulation of EDA2R and its involvement in chemotherapy-induced hair loss. FEBS Lett. 584(11), 2473–2477 (2010).

    Article 

    Google Scholar
     

  • Broustas, C. et al. Impact of neutron exposure on global gene expression in a human peripheral blood model. Radiat. Res. 187(4), 433–440 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Han, C., Lim, S., Koo, J., Kim, W. & Kim, S. PHLDA3 overexpression in hepatocytes by endoplasmic reticulum stress via IRE1-Xbp1s pathway expedites liver injury. Gut 65(8), 1377–1388 (2016).

    Article 

    Google Scholar
     

  • Moding, E. J. et al. An extra copy of p53 suppresses development of spontaneous Kras-driven but not radiation-induced cancer. JCI Insight 1(10), 86698 (2016).

    Article 

    Google Scholar
     

  • Sproull, M., Shankavaram, U. & Camphausen, K. Novel murine biomarkers of radiation exposure using an aptamer-based proteomic technology. Front. Pharmacol. 26(12), 943 (2021).


    Google Scholar
     

  • Filiano, A. N. et al. Gene expression analysis in radiotherapy patients and C57BL/6 mice as a measure of exposure to ionizing radiation. Radiat. Res. 176(1), 49–61 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Robinson, M., Harmon, C. & O’Farrelly, C. Liver immunology and its role in inflammation and homeostasis. Cell Mol. Immunol. 13(3), 267–276 (2016).

    Article 

    Google Scholar
     

  • Pavlasova, G. & Mraz, M. The regulation and function of CD20: an “enigma” of B-cell biology and targeted therapy. Haematologica 105(6), 1494–1506 (2020).

    Article 

    Google Scholar
     

  • Paterson, M. A., Hosking, P. S. & Coughlin, P. B. Expression of the serpin centerin defines a germinal center phenotype in B-cell lymphomas. Am. J. Clin. Pathol. 130(1), 117–126 (2008).

    Article 

    Google Scholar
     

  • Lin, L., Yee, S. W., Kim, R. B. & Giacomini, K. M. SLC transporters as therapeutic targets: Emerging opportunities. In Nature Reviews Drug Discovery Vol. 14 543–560 (Nature Publishing Group, 2015).


    Google Scholar
     

  • He, L., Vasiliou, K. & Nebert, D. W. Analysis and update of the human solute carrier (SLC) gene superfamily. Hum. Genomics. 3(2), 195 (2009).

    Article 

    Google Scholar
     

  • Romero, M. F., Chen, A. P., Parker, M. D. & Boron, W. F. The SLC4 family of bicarbonate ([…formula…]) Transporters. Mol. Aspects Med. 34(2–3), 159 (2013).

    Article 

    Google Scholar
     

  • Pramod, A. B., Foster, J., Carvelli, L. & Henry, L. K. SLC6 transporters: Structure, function, regulation, disease association and therapeutics. Mol. Aspects Med. 34(2–3), 197 (2013).

    Article 

    Google Scholar
     

  • Halestrap, A. P. The SLC16 gene family – Structure, role and regulation in health and disease. Mol. Aspects Med. 34(2–3), 337–349 (2013).

    Article 

    Google Scholar
     

  • Felmlee, M. A., Jones, R. S., Rodriguez-Cruz, V., Follman, K. E. & Morris, M. E. Monocarboxylate transporters (SLC16): Function, regulation, and role in health and disease. Pharmacol. Rev. 72(2), 466–485 (2020).

    Article 

    Google Scholar
     

  • Palmieri, F. The mitochondrial transporter family SLC25: Identification, properties and physiopathology. Mol. Aspects Med. 34(2–3), 465–484 (2013).

    Article 

    Google Scholar
     

  • Ruprecht, J. J. & Kunji, E. R. S. The SLC25 mitochondrial carrier family: Structure and mechanism. Trends Biochem. Sci. 45(3), 244–258 (2020).

    Article 

    Google Scholar
     

  • Nigam, S. K. The SLC22 transporter family: A paradigm for the impact of drug transporters on metabolic pathways, signaling, and disease. Annu. Rev. Pharmacol. Toxicol. 6(58), 663 (2018).

    Article 

    Google Scholar
     

  • Volk, C. OCTs, OATs, and OCTNs: structure and function of the polyspecific organic ion transporters of the SLC22 family. Wiley Interdiscip. Rev. Membr. Transp. Signal. 3(1), 1–13. https://doi.org/10.1002/wmts.100 (2014).

    Article 

    Google Scholar
     

  • Juraszek, B. & Nałąecz, K. A. SLC22A5 (OCTN2) carnitine transporter—indispensable for cell metabolism, a Jekyll and hyde of human cancer. Molecules 25(1), 14 (2020).

    Article 

    Google Scholar
     

  • Song, P., Onishi, A., Koepsell, H. & Vallon, V. Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus. Expert Opin. Ther. Targets. 20(9), 1109 (2016).

    Article 

    Google Scholar
     

  • Kuang, W. et al. SLC22A14 is a mitochondrial riboflavin transporter required for sperm oxidative phosphorylation and male fertility. Cell Rep. 35(3), 109025 (2021).

    Article 

    Google Scholar
     

  • Park, S. et al. Suppression of ABCD2 dysregulates lipid metabolism via dysregulation of miR-141: ACSL4 in human osteoarthritis. Cell Biochem. Funct. 36(7), 366–376 (2018).

    Article 

    Google Scholar
     

  • Wang, C. Y. et al. A novel nonsense mutation of ABCA8 in a han-Chinese family with ASCVD Leads to the reduction of HDL-c levels. Front Genet. 15(11), 755 (2020).

    Article 

    Google Scholar
     

  • Oshio, Y. et al. Very low-density lipoprotein receptor increases in a liver-specific manner due to protein deficiency but does not affect fatty liver in mice. Sci. Rep. 11(1), 1–11 (2021).

    Article 

    Google Scholar
     

  • Gao, Y. et al. Upregulation of hepatic VLDLR via PPARα is required for the triglyceride-lowering effect of fenofibrate. J. Lipid Res. 55(8), 1622 (2014).

    Article 

    Google Scholar
     

  • Qu, W. et al. Cytochrome P450 CYP2J9, a new mouse arachidonic acid ω-1 hydroxylase predominantly expressed in brain. J. Biol. Chem. 276(27), 25467–25479 (2001).

    Article 

    Google Scholar
     

  • Chuang, S. S. et al. CYP2U1, a novel human thymus- and brain-specific cytochrome P450, Catalyzes ω- and (ω-1)-hydroxylation of fatty acids. J. Biol. Chem. 279(8), 6305–6314 (2004).

    Article 

    Google Scholar
     

  • Ellero, S. et al. Xenobiotic-metabolizing cytochromes P450 in human white adipose tissue: Expression and induction. Drug Metab. Dispos. 38(4), 679–686 (2010).

    Article 

    Google Scholar
     

  • Christmas, P. et al. Cytochrome P-450 4F18 Is the Leukotriene B4 ω-1/ω-2 Hydroxylase in Mouse Polymorphonuclear Leukocytes: Identification as the functional orthologue of human polymorphonuclear leukocyte CYP4F3A in the down-regulation of responses to LTB4. J. Biol. Chem. 281(11), 7189–7196 (2006).

    Article 

    Google Scholar
     

  • Kometani, M. et al. Cortisol overproduction results from DNA methylation of CYP11B1 in hypercortisolemia. Sci. Rep. 7(1), 1–9 (2017).

    Article 

    Google Scholar
     

  • Topletz, A. R. et al. Comparison of the function and expression of CYP26A1 and CYP26B1, the two retinoic acid hydroxylases. Biochem. Pharmacol. 83(1), 149 (2012).

    Article 

    Google Scholar
     

  • Skulas-Ray, A. C. et al. Omega-3 fatty acids for the management of hypertriglyceridemia: A science advisory from the American Heart Association. Circulation 140(12), E673–E691 (2019).

    Article 

    Google Scholar
     

  • Si, Z. et al. CYP46A1 as a new regulator of lipid metabolism through CRISPR-based whole-genome screening. FASEB J. 34(10), 13776–13791. https://doi.org/10.1096/fj.202001067R (2020).

    Article 

    Google Scholar
     

  • Yang, Y. et al. Role of glutathione S-transferases in protection against lipid peroxidation overexpression of hGSTA2–2 in K562 cells protects against hydrogen peroxide-induced apoptosis and inhibits JNK and caspase 3 activation. J. Biol. Chem. 276(22), 19220–19230 (2001).

    Article 

    Google Scholar
     

  • Gamage, N. et al. Human sulfotransferases and their role in chemical metabolism. Toxicol. Sci. 90(1), 5–22 (2006).

    Article 

    Google Scholar
     

  • Oh, E. T. & Park, H. J. Implications of NQO1 in cancer therapy. BMB Rep. 48(11), 609–617 (2015).

    Article 

    Google Scholar
     

  • Ross, D. & Siegel, D. Functions of NQO1 in cellular protection and CoQ10 metabolism and its potential role as a redox sensitive molecular switch. Front. Physiol. 8, 595 (2017).

    Article 

    Google Scholar
     

  • Wang, S. et al. Potential role of hedgehog pathway in liver response to radiation. PLoS ONE 8(9), e74141 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Lysek-Gladysinska, M. et al. Long-term effects of low-dose mouse liver irradiation involve ultrastructural and biochemical changes in hepatocytes that depend on lipid metabolism. Radiat. Environ. Biophys. 57(2), 123–132 (2018).

    Article 

    Google Scholar
     

  • Kim, C. W. et al. Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: A bedside to bench investigation. Cell Metab. 26(2), 394 (2017).

    Article 

    Google Scholar
     

  • Burhans, M. S. et al. Hepatic oleate regulates adipose tissue lipogenesis and fatty acid oxidation. J. Lipid Res. 56(2), 304–318 (2015).

    Article 

    Google Scholar
     

  • Wang, C. et al. Perilipin 5 improves hepatic lipotoxicity by inhibiting lipolysis. Hepatology 61(3), 870–882 (2015).

    Article 

    Google Scholar
     

  • Wang, H. et al. Mutations in SREBF1, encoding sterol regulatory element binding transcription factor 1, cause autosomal-dominant IFAP syndrome. Am. J. Hum. Genet. 107(1), 34–45 (2020).

    Article 

    Google Scholar
     

  • Moslehi, A. & Hamidi-Zad, Z. Role of SREBPs in liver diseases: A mini-review. J Clin Transl Hepatol. 6(3), 332 (2018).

    Article 

    Google Scholar
     

  • Ferguson, P. J. & El-Shanti, H. Majeed syndrome: A review of the clinical, genetic and immunologic features. Biomolecules 11(3), 1–16 (2021).

    Article 

    Google Scholar
     

  • Gao, X. F. et al. Enhanced susceptibility of Cpt1c knockout mice to glucose intolerance induced by a high-fat diet involves elevated hepatic gluconeogenesis and decreased skeletal muscle glucose uptake. Diabetologia 52(5), 912–920 (2009).

    Article 

    Google Scholar
     

  • Leslie, N. et al. Neonatal multiorgan failure due to ACAD9 mutation and complex I deficiency with mitochondrial hyperplasia in liver, cardiac myocytes, skeletal muscle, and renal tubules. Hum. Pathol. 1(49), 27–32 (2016).

    Article 

    Google Scholar
     

  • Hong, Y. B. et al. A compound heterozygous mutation in HADHB gene causes an axonal Charcot-Marie-tooth disease. BMC Med. Genet. 14(1), 1–8. https://doi.org/10.1186/1471-2350-14-125 (2013).

    Article 

    Google Scholar
     

  • Martius, G. et al. Hepatic fat accumulation and regulation of FAT/CD36: An effect of hepatic irradiation. Int. J. Clin. Exp. Pathol. 7(8), 5379 (2014).


    Google Scholar
     

  • Chartoumpekis, D. V. et al. Differential EXPRESSION of MicroRNAs in adipose tissue after long-term high-fat diet-induced obesity in mice. PLoS ONE 7(4), e34872. https://doi.org/10.1371/journal.pone.0034872 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Su, T. et al. MiR-34a-5p and miR-452–5p: The novel regulators of pancreatic endocrine dysfunction in diabetic Zucker rats? Int. J. Med. Sci. 18(14), 3171 (2021).


    Google Scholar
     

  • Hung, Y. H. et al. Acute suppression of insulin resistance-associated hepatic miR-29 in vivo improves glycemic control in adult mice. Physiol. Genom. 51(8), 379–389. https://doi.org/10.1152/physiolgenomics.00037.2019 (2019).

    Article 

    Google Scholar
     

  • Kobayashi, M. et al. Iron-heme-Bach1 axis is involved in erythroblast adaptation to iron deficiency. Haematologica 102(3), 454–465 (2017).

    Article 

    Google Scholar
     

  • Recio, L. et al. Differential expression of long noncoding RNAs in the livers of female B6C3F1 mice exposed to the carcinogen furan. Toxicol. Sci. 135(2), 369–379 (2013).

    Article 

    Google Scholar
     

  • Huarte, M. et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142(3), 409–419 (2010).

    Article 

    Google Scholar
     

  • Plett, P. et al. Establishing a murine model of the hematopoietic syndrome of the acute radiation syndrome. Health Phys. 103(4), 343–355 (2012).

    Article 

    Google Scholar
     

  • Chopra, S. et al. Gene expression profiles from heart, lung and liver samples of total-body-irradiated minipigs: Implications for predicting radiation-induced tissue toxicity. Radiat. Res. 194(4), 411–430 (2020).

    Article 

    Google Scholar
     

  • Halimi, M. et al. Human serum miR-34a as an indicator of exposure to ionizing radiation. Radiat. Environ. Biophys. 55(4), 423–429 (2016).

    Article 

    Google Scholar
     

  • Liu, C. et al. MiR-34a in Age and tissue related radio-sensitivity and serum miR-34a as a novel indicator of radiation injury. Int. J. Biol. Sci. 7(2), 221 (2011).

    Article 

    Google Scholar
     

  • Shen, Y. et al. miR-34a and miR-125b are upregulated in peripheral blood mononuclear cells from patients with type 2 diabetes mellitus. Exp. Ther. Med. 14(6), 5589–5596. https://doi.org/10.3892/etm.2017.5254/abstract (2017).

    Article 

    Google Scholar
     

  • Yannam, G. R. et al. A nonhuman primate model of human radiation-induced venocclusive liver disease and hepatocyte injury. Int. J. Radiat. Oncol. Biol. Phys. 88(2), 404–411 (2014).

    Article 

    Google Scholar
     

  • Shi, J. et al. PANDORA-seq expands the repertoire of regulatory small RNAs by overcoming RNA modifications. Nat. Cell Biol. 23(4), 424 (2021).

    Article 

    Google Scholar
     

  • Shi, J., Zhou, T. & Chen, Q. Exploring the expanding universe of small RNAs. Nat. Cell Biol. 24(4), 415–423 (2022).

    Article 

    Google Scholar
     

  • Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucl. Acids Res. 43(7), e47 (2015).

    Article 

    Google Scholar
     

  • Ritchie, M. E. et al. A comparison of background correction methods for two-colour microarrays. Bioinformatics 23(20), 2700–2707 (2007).

    Article 

    Google Scholar
     

  • Smyth, G. K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3(1), (2004).

  • Aken, B.L., Ayling, S., Barrell, D., Clarke, L., Curwen, V., Fairley, S., et al. The Ensembl gene annotation system. Database 2016 (2016).

  • Agarwal, V., Bell, G. W., Nam, J. W. & Bartel, D. P. Predicting effective microRNA target sites in mammalian mRNAs. Elife 4, e05005 (2015).

    Article 

    Google Scholar
     



  • Source link

    Share

    Leave a Reply

    Your email address will not be published. Required fields are marked *