Montay-Gruel, P., Meziani, L., Yakkala, C. & Vozenin, M. Expanding the therapeutic index of radiation therapy by normal tissue protection. Br. J. Radiol. 92(1093), 20180008 (2019).
Kim, J., Jenrow, K. & Brown, S. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials. Radiat. Oncol. J. 32(3), 103–115 (2014).
Preston, D. L. et al. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat. Res. 168(1), 1–64 (2007).
Akahoshi, M. et al. Effects of radiation on fatty liver and metabolic coronary risk factors among atomic bomb survivors in Nagasaki. Hypertens. Res. 26(12), 965–970 (2003).
Tanaka, H., Hayashi, S., Ohtakara, K. & Hoshi, H. Hepatic dysfunction after radiotherapy for primary gastric lymphoma. J. Radiat. Res. 54(1), 92–97 (2013).
Klein, J. et al. Stereotactic body radiotherapy: An effective local treatment modality for hepatocellular carcinoma. Fut. Oncol. 10(14), 2227–2241 (2014).
Tomita, Y. et al. High incidence of fatty liver and insulin resistance in long-term adult survivors of childhood SCT. Bone Marrow Transpl. 46(3), 416–425 (2011).
Guha, C., Sharma, A., Gupta, S., Alfieri, A., Gorla, G., Gagandeep, S. et al. Amelioration of Radiation-induced Liver Damage in Partially Hepatectomized Rats by Hepatocyte Transplantation | Cancer Research [Internet]. (1999) [cited 2022 Feb 4]. Available from: https://cancerres.aacrjournals.org/content/59/23/5871#sec-2
Jiang, L. et al. Proteomic analysis of radiation-induced acute liver damage in a rabbit model. Dose Response. 17(4), 1559325819889508 (2019).
Zhu, W., Zhang, X., Yu, M., Lin, B. & Yu, C. Radiation-induced liver injury and hepatocyte senescence. Cell Death Discov. 7(1), 1–9 (2021).
Kjærgaard, K. et al. Hepatic regeneration following radiation-induced liver injury is associated with increased hepatobiliary secretion measured by PET in Göttingen minipigs. Sci. Rep. 10(1), 1–10 (2020).
Radwan, R. R. & Hasan, H. F. Pioglitazone ameliorates hepatic damage in irradiated rats via regulating anti-inflammatory and antifibrogenic signalling pathways. Free Radic. Res. 53(7), 748–757. https://doi.org/10.1080/1071576220191624742 (2019).
Huang, Y. et al. Clinical parameters for predicting radiation-induced liver disease after intrahepatic reirradiation for hepatocellular carcinoma. Radiat. Oncol. 11(1), 1–9 (2016).
Chen, Y. X. et al. Mesenchymal stem cell–conditioned medium prevents radiation-induced liver injury by inhibiting inflammation and protecting sinusoidal endothelial cells. J. Radiat. Res. 56(4), 700–708 (2015).
Toesca, D. A. S. et al. Strategies for prediction and mitigation of radiation-induced liver toxicity. J. Radiat. Res. 59(Suppl_1), i40–i49 (2018).
Wang, S. et al. Potential role of hedgehog pathway in liver response to radiation. PLoS ONE 8(9), e74141 (2013).
Kim, J. & Jung, Y. Radiation-induced liver disease: Current understanding and future perspectives. In Experimental and Molecular Medicine Vol. 49 e359 (Nature Publishing Group, 2017).
Liang, S. X. et al. Radiation-induced liver disease in three-dimensional conformal radiation therapy for primary liver carcinoma: The risk factors and hepatic radiation tolerance. Int. J. Radiat. Oncol. Biol. Phys. 65(2), 426–434 (2006).
Rothkamm, K. et al. Comparison of established and emerging biodosimetry assays. Radiat. Res. 180(2), 111–119 (2013).
Podralska, M. et al. Non-coding RNAs in cancer radiosensitivity: MicroRNAs and lncrnas as regulators of radiation-induced signaling pathways. Cancers (Basel). 12(6), 1–27 (2020).
Lee, KF. Chen, YC., Hsu, PW., Liu, IY., Wu, LS. MicroRNA expression profiling altered by variant dosage of radiation exposure. Biomed. Res. Int. 2014 (2014).
May, J. M., Bylicky, M., Chopra, S., Coleman, C. N. & Aryankalayil, M. J. Long and short non-coding RNA and radiation response: A review. Transl. Res. 233, 162–179 (2021).
John Liu, S. et al. CRISPRi-based radiation modifier screen identifies long non-coding RNA therapeutic targets in glioma. Genome Biol. 21(1), 1–18 (2020).
Viereck, J. & Thum, T. Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circ. Res. 120(2), 381–399 (2017).
Aryankalayil, M. J. et al. Analysis of lncRNA-miRNA-mRNA expression pattern in heart tissue after total body radiation in a mouse model. J. Transl. Med. 19(1), 336 (2021).
Schmitt, A. M. et al. An inducible long noncoding RNA amplifies DNA damage signaling. Nat. Genet. 48(11), 1370 (2016).
Beer, L. et al. Ionizing radiation regulates long non-coding RNAs in human peripheral blood mononuclear cells. J. Radiat. Res. 58(2), 201–209 (2017).
Aryankalayil, M. J. et al. Radiation-induced long noncoding rnas in a mouse model after whole-body irradiation. Radiat. Res. 189(3), 251–263 (2018).
Fendler, W. et al. Evolutionarily conserved serum microRNAs predict radiation-induced fatality in nonhuman primates. Sci. Transl. Med. 9(379), 1–12 (2017).
Glinge, C. et al. Stability of circulating blood-based microRNAs – pre-analytic methodological considerations. PLoS ONE 12(2), e0167969 (2017).
Balzano, F. et al. miRNA stability in frozen plasma samples. Molecules 20(10), 19030–19040 (2015).
Li, Y. et al. Identification of lncRNA, MicroRNA, and mRNA-Associated CeRNA network of radiation-induced lung injury in a mice model. Dose Response. 17(4), 1559325819891012 (2019).
Aryankalayil, M. J. et al. Microarray analysis of miRNA expression profiles following whole body irradiation in a mouse model. Biomarkers 23(7), 689–703 (2018).
Price, J. G. et al. CDKN1A regulates Langerhans cell survival and promotes Treg cell generation upon exposure to ionizing irradiation. Nat Immunol. 16(10), 1060–1068 (2015).
Ghandhi, S. A., Smilenov, L., Shuryak, I., Pujol-Canadell, M. & Amundson, S. A. Discordant gene responses to radiation in humans and mice and the role of hematopoietically humanized mice in the search for radiation biomarkers. Sci. Rep. 9(1), 1–13 (2019).
Himburg, H. et al. A molecular profile of the endothelial cell response to ionizing radiation. Radiat. Res. 186(2), 141–152 (2016).
van de Vosse, E., van Dissel, J. T. & Ottenhoff, T. H. Genetic deficiencies of innate immune signalling in human infectious disease. Lancet Infect Dis. 9(11), 688–698 (2009).
Kawase, T. et al. PH domain-only protein PHLDA3 is a p53-regulated repressor of Akt. Cell 136(3), 535–550 (2009).
Hsiao, C., Reddy, S., Chen, M. & Saligan, L. Genomic profile of fatigued men receiving localized radiation therapy. Biol. Res. Nurs. 18(3), 281–289 (2016).
Sun, Z. et al. An RNA-seq-based expression profiling of radiation-induced esophageal injury in a rat model. Dose Response 17(2), 1559325819843373 (2019).
Azimzadeh, O. et al. Chronic occupational exposure to ionizing radiation induces alterations in the structure and metabolism of the heart: A proteomic analysis of human formalin-fixed paraffin-embedded (FFPE) cardiac tissue. Int J Mol Sci. 21(18), 1–21 (2020).
Roudkenar, M. H. et al. Gene expression profiles in mouse liver cells after exposure to different types of radiation. J. Radiat. Res. 49(1), 29–40 (2008).
Pervin, M., Unno, K., Konishi, T. & Nakamura, Y. L-arginine exerts excellent anti-stress effects on stress-induced shortened lifespan, cognitive decline and depression. Int. J. Mol. Sci. 22(2), 508 (2021).
Kalousi, A. et al. The nuclear oncogene SET controls DNA repair by KAP1 and HP1 retention to chromatin. Cell Rep. 11(1), 149–163 (2015).
Pérez-Castro, A. J. & Freire, R. Rad9B responds to nucleolar stress through ATR and JNK signalling, and delays the G1–S transition. J. Cell Sci. 125(5), 1152–1164 (2012).
Nalesso, G. et al. WNT16 antagonises excessive canonical WNT activation and protects cartilage in osteoarthritis. Ann. Rheum. Dis. 76(1), 218–226 (2017).
Khozouz, R. F., Huq, S. Z. & Perry, M. C. Radiation-induced liver disease. J. Clin. Oncol. 26(29), 4844–4845 (2008).
Lee, I. J., Seong, J., Shim, S. J. & Han, K. H. Radiotherapeutic parameters predictive of liver complications induced by liver tumor radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 73(1), 154–158 (2009).
Lawrence, T. S. et al. Hepatic toxicity resulting from cancer treatment. Int. J. Radiat. Oncol. Biol. Phys. 31(5), 1237–1248 (1995).
Chiba, M. et al. Serum miR-375-3p increase in mice exposed to a high dose of ionizing radiation. Sci. Rep. 8(1), 1–11 (2018).
Macaeva, E., Mysara, M., De Vos, W. H., Baatout, S. & Quintens, R. Gene expression-based biodosimetry for radiological incidents: Assessment of dose and time after radiation exposure. Int. J. Radiat. Biol. 95(1), 64–75 (2019).
Lindeman, L. C. et al. Gamma radiation induces locus specific changes to histone modification enrichment in zebrafish and Atlantic salmon. PLoS ONE 14(2), e0212123 (2019).
Juárez-Hernández, E. et al. Association between serum hemoglobin levels and non alcoholic fatty liver disease in a mexican population. Ann. Hepatol. 17(4), 577–584 (2018).
Chung, G. et al. Associations between hemoglobin concentrations and the development of incidental metabolic syndrome or nonalcoholic fatty liver disease. Dig Liver Dis. 49(1), 57–62 (2017).
Giorgio, V. et al. Elevated hemoglobin level is associated with advanced fibrosis in pediatric nonalcoholic fatty liver disease. J. Pediatr. Gastroenterol. Nutr. 65(2), 150–155 (2017).
Liu, W., Baker, S., Baker, R., Nowak, N. & Zhu, L. Upregulation of hemoglobin expression by oxidative stress in hepatocytes and its implication in nonalcoholic steatohepatitis. PLoS ONE 6(9), e24363 (2011).
Brosh, R. et al. p53-dependent transcriptional regulation of EDA2R and its involvement in chemotherapy-induced hair loss. FEBS Lett. 584(11), 2473–2477 (2010).
Broustas, C. et al. Impact of neutron exposure on global gene expression in a human peripheral blood model. Radiat. Res. 187(4), 433–440 (2017).
Han, C., Lim, S., Koo, J., Kim, W. & Kim, S. PHLDA3 overexpression in hepatocytes by endoplasmic reticulum stress via IRE1-Xbp1s pathway expedites liver injury. Gut 65(8), 1377–1388 (2016).
Moding, E. J. et al. An extra copy of p53 suppresses development of spontaneous Kras-driven but not radiation-induced cancer. JCI Insight 1(10), 86698 (2016).
Sproull, M., Shankavaram, U. & Camphausen, K. Novel murine biomarkers of radiation exposure using an aptamer-based proteomic technology. Front. Pharmacol. 26(12), 943 (2021).
Filiano, A. N. et al. Gene expression analysis in radiotherapy patients and C57BL/6 mice as a measure of exposure to ionizing radiation. Radiat. Res. 176(1), 49–61 (2011).
Robinson, M., Harmon, C. & O’Farrelly, C. Liver immunology and its role in inflammation and homeostasis. Cell Mol. Immunol. 13(3), 267–276 (2016).
Pavlasova, G. & Mraz, M. The regulation and function of CD20: an “enigma” of B-cell biology and targeted therapy. Haematologica 105(6), 1494–1506 (2020).
Paterson, M. A., Hosking, P. S. & Coughlin, P. B. Expression of the serpin centerin defines a germinal center phenotype in B-cell lymphomas. Am. J. Clin. Pathol. 130(1), 117–126 (2008).
Lin, L., Yee, S. W., Kim, R. B. & Giacomini, K. M. SLC transporters as therapeutic targets: Emerging opportunities. In Nature Reviews Drug Discovery Vol. 14 543–560 (Nature Publishing Group, 2015).
He, L., Vasiliou, K. & Nebert, D. W. Analysis and update of the human solute carrier (SLC) gene superfamily. Hum. Genomics. 3(2), 195 (2009).
Romero, M. F., Chen, A. P., Parker, M. D. & Boron, W. F. The SLC4 family of bicarbonate ([…formula…]) Transporters. Mol. Aspects Med. 34(2–3), 159 (2013).
Pramod, A. B., Foster, J., Carvelli, L. & Henry, L. K. SLC6 transporters: Structure, function, regulation, disease association and therapeutics. Mol. Aspects Med. 34(2–3), 197 (2013).
Halestrap, A. P. The SLC16 gene family – Structure, role and regulation in health and disease. Mol. Aspects Med. 34(2–3), 337–349 (2013).
Felmlee, M. A., Jones, R. S., Rodriguez-Cruz, V., Follman, K. E. & Morris, M. E. Monocarboxylate transporters (SLC16): Function, regulation, and role in health and disease. Pharmacol. Rev. 72(2), 466–485 (2020).
Palmieri, F. The mitochondrial transporter family SLC25: Identification, properties and physiopathology. Mol. Aspects Med. 34(2–3), 465–484 (2013).
Ruprecht, J. J. & Kunji, E. R. S. The SLC25 mitochondrial carrier family: Structure and mechanism. Trends Biochem. Sci. 45(3), 244–258 (2020).
Nigam, S. K. The SLC22 transporter family: A paradigm for the impact of drug transporters on metabolic pathways, signaling, and disease. Annu. Rev. Pharmacol. Toxicol. 6(58), 663 (2018).
Volk, C. OCTs, OATs, and OCTNs: structure and function of the polyspecific organic ion transporters of the SLC22 family. Wiley Interdiscip. Rev. Membr. Transp. Signal. 3(1), 1–13. https://doi.org/10.1002/wmts.100 (2014).
Juraszek, B. & Nałąecz, K. A. SLC22A5 (OCTN2) carnitine transporter—indispensable for cell metabolism, a Jekyll and hyde of human cancer. Molecules 25(1), 14 (2020).
Song, P., Onishi, A., Koepsell, H. & Vallon, V. Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus. Expert Opin. Ther. Targets. 20(9), 1109 (2016).
Kuang, W. et al. SLC22A14 is a mitochondrial riboflavin transporter required for sperm oxidative phosphorylation and male fertility. Cell Rep. 35(3), 109025 (2021).
Park, S. et al. Suppression of ABCD2 dysregulates lipid metabolism via dysregulation of miR-141: ACSL4 in human osteoarthritis. Cell Biochem. Funct. 36(7), 366–376 (2018).
Wang, C. Y. et al. A novel nonsense mutation of ABCA8 in a han-Chinese family with ASCVD Leads to the reduction of HDL-c levels. Front Genet. 15(11), 755 (2020).
Oshio, Y. et al. Very low-density lipoprotein receptor increases in a liver-specific manner due to protein deficiency but does not affect fatty liver in mice. Sci. Rep. 11(1), 1–11 (2021).
Gao, Y. et al. Upregulation of hepatic VLDLR via PPARα is required for the triglyceride-lowering effect of fenofibrate. J. Lipid Res. 55(8), 1622 (2014).
Qu, W. et al. Cytochrome P450 CYP2J9, a new mouse arachidonic acid ω-1 hydroxylase predominantly expressed in brain. J. Biol. Chem. 276(27), 25467–25479 (2001).
Chuang, S. S. et al. CYP2U1, a novel human thymus- and brain-specific cytochrome P450, Catalyzes ω- and (ω-1)-hydroxylation of fatty acids. J. Biol. Chem. 279(8), 6305–6314 (2004).
Ellero, S. et al. Xenobiotic-metabolizing cytochromes P450 in human white adipose tissue: Expression and induction. Drug Metab. Dispos. 38(4), 679–686 (2010).
Christmas, P. et al. Cytochrome P-450 4F18 Is the Leukotriene B4 ω-1/ω-2 Hydroxylase in Mouse Polymorphonuclear Leukocytes: Identification as the functional orthologue of human polymorphonuclear leukocyte CYP4F3A in the down-regulation of responses to LTB4. J. Biol. Chem. 281(11), 7189–7196 (2006).
Kometani, M. et al. Cortisol overproduction results from DNA methylation of CYP11B1 in hypercortisolemia. Sci. Rep. 7(1), 1–9 (2017).
Topletz, A. R. et al. Comparison of the function and expression of CYP26A1 and CYP26B1, the two retinoic acid hydroxylases. Biochem. Pharmacol. 83(1), 149 (2012).
Skulas-Ray, A. C. et al. Omega-3 fatty acids for the management of hypertriglyceridemia: A science advisory from the American Heart Association. Circulation 140(12), E673–E691 (2019).
Si, Z. et al. CYP46A1 as a new regulator of lipid metabolism through CRISPR-based whole-genome screening. FASEB J. 34(10), 13776–13791. https://doi.org/10.1096/fj.202001067R (2020).
Yang, Y. et al. Role of glutathione S-transferases in protection against lipid peroxidation overexpression of hGSTA2–2 in K562 cells protects against hydrogen peroxide-induced apoptosis and inhibits JNK and caspase 3 activation. J. Biol. Chem. 276(22), 19220–19230 (2001).
Gamage, N. et al. Human sulfotransferases and their role in chemical metabolism. Toxicol. Sci. 90(1), 5–22 (2006).
Oh, E. T. & Park, H. J. Implications of NQO1 in cancer therapy. BMB Rep. 48(11), 609–617 (2015).
Ross, D. & Siegel, D. Functions of NQO1 in cellular protection and CoQ10 metabolism and its potential role as a redox sensitive molecular switch. Front. Physiol. 8, 595 (2017).
Wang, S. et al. Potential role of hedgehog pathway in liver response to radiation. PLoS ONE 8(9), e74141 (2013).
Lysek-Gladysinska, M. et al. Long-term effects of low-dose mouse liver irradiation involve ultrastructural and biochemical changes in hepatocytes that depend on lipid metabolism. Radiat. Environ. Biophys. 57(2), 123–132 (2018).
Kim, C. W. et al. Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: A bedside to bench investigation. Cell Metab. 26(2), 394 (2017).
Burhans, M. S. et al. Hepatic oleate regulates adipose tissue lipogenesis and fatty acid oxidation. J. Lipid Res. 56(2), 304–318 (2015).
Wang, C. et al. Perilipin 5 improves hepatic lipotoxicity by inhibiting lipolysis. Hepatology 61(3), 870–882 (2015).
Wang, H. et al. Mutations in SREBF1, encoding sterol regulatory element binding transcription factor 1, cause autosomal-dominant IFAP syndrome. Am. J. Hum. Genet. 107(1), 34–45 (2020).
Moslehi, A. & Hamidi-Zad, Z. Role of SREBPs in liver diseases: A mini-review. J Clin Transl Hepatol. 6(3), 332 (2018).
Ferguson, P. J. & El-Shanti, H. Majeed syndrome: A review of the clinical, genetic and immunologic features. Biomolecules 11(3), 1–16 (2021).
Gao, X. F. et al. Enhanced susceptibility of Cpt1c knockout mice to glucose intolerance induced by a high-fat diet involves elevated hepatic gluconeogenesis and decreased skeletal muscle glucose uptake. Diabetologia 52(5), 912–920 (2009).
Leslie, N. et al. Neonatal multiorgan failure due to ACAD9 mutation and complex I deficiency with mitochondrial hyperplasia in liver, cardiac myocytes, skeletal muscle, and renal tubules. Hum. Pathol. 1(49), 27–32 (2016).
Hong, Y. B. et al. A compound heterozygous mutation in HADHB gene causes an axonal Charcot-Marie-tooth disease. BMC Med. Genet. 14(1), 1–8. https://doi.org/10.1186/1471-2350-14-125 (2013).
Martius, G. et al. Hepatic fat accumulation and regulation of FAT/CD36: An effect of hepatic irradiation. Int. J. Clin. Exp. Pathol. 7(8), 5379 (2014).
Chartoumpekis, D. V. et al. Differential EXPRESSION of MicroRNAs in adipose tissue after long-term high-fat diet-induced obesity in mice. PLoS ONE 7(4), e34872. https://doi.org/10.1371/journal.pone.0034872 (2012).
Su, T. et al. MiR-34a-5p and miR-452–5p: The novel regulators of pancreatic endocrine dysfunction in diabetic Zucker rats? Int. J. Med. Sci. 18(14), 3171 (2021).
Hung, Y. H. et al. Acute suppression of insulin resistance-associated hepatic miR-29 in vivo improves glycemic control in adult mice. Physiol. Genom. 51(8), 379–389. https://doi.org/10.1152/physiolgenomics.00037.2019 (2019).
Kobayashi, M. et al. Iron-heme-Bach1 axis is involved in erythroblast adaptation to iron deficiency. Haematologica 102(3), 454–465 (2017).
Recio, L. et al. Differential expression of long noncoding RNAs in the livers of female B6C3F1 mice exposed to the carcinogen furan. Toxicol. Sci. 135(2), 369–379 (2013).
Huarte, M. et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142(3), 409–419 (2010).
Plett, P. et al. Establishing a murine model of the hematopoietic syndrome of the acute radiation syndrome. Health Phys. 103(4), 343–355 (2012).
Chopra, S. et al. Gene expression profiles from heart, lung and liver samples of total-body-irradiated minipigs: Implications for predicting radiation-induced tissue toxicity. Radiat. Res. 194(4), 411–430 (2020).
Halimi, M. et al. Human serum miR-34a as an indicator of exposure to ionizing radiation. Radiat. Environ. Biophys. 55(4), 423–429 (2016).
Liu, C. et al. MiR-34a in Age and tissue related radio-sensitivity and serum miR-34a as a novel indicator of radiation injury. Int. J. Biol. Sci. 7(2), 221 (2011).
Shen, Y. et al. miR-34a and miR-125b are upregulated in peripheral blood mononuclear cells from patients with type 2 diabetes mellitus. Exp. Ther. Med. 14(6), 5589–5596. https://doi.org/10.3892/etm.2017.5254/abstract (2017).
Yannam, G. R. et al. A nonhuman primate model of human radiation-induced venocclusive liver disease and hepatocyte injury. Int. J. Radiat. Oncol. Biol. Phys. 88(2), 404–411 (2014).
Shi, J. et al. PANDORA-seq expands the repertoire of regulatory small RNAs by overcoming RNA modifications. Nat. Cell Biol. 23(4), 424 (2021).
Shi, J., Zhou, T. & Chen, Q. Exploring the expanding universe of small RNAs. Nat. Cell Biol. 24(4), 415–423 (2022).
Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucl. Acids Res. 43(7), e47 (2015).
Ritchie, M. E. et al. A comparison of background correction methods for two-colour microarrays. Bioinformatics 23(20), 2700–2707 (2007).
Smyth, G. K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3(1), (2004).
Aken, B.L., Ayling, S., Barrell, D., Clarke, L., Curwen, V., Fairley, S., et al. The Ensembl gene annotation system. Database 2016 (2016).
Agarwal, V., Bell, G. W., Nam, J. W. & Bartel, D. P. Predicting effective microRNA target sites in mammalian mRNAs. Elife 4, e05005 (2015).