In individuals with Williams syndrome, dysregulation of methylation in non-coding regions of neuronal and oligodendrocyte DNA is associated with pathology and cortical development


  • Morris CA. Introduction: Williams syndrome. Am J Med Genet Part C: Semin Med Genet. 2010;154C:203–8.


    Google Scholar
     

  • Pober BR. Williams–Beuren Syndrome. N. Engl J Med. 2010;362:239–52.


    Google Scholar
     

  • Kozel BA, Barak B, Kim CA, Mervis CB, Osborne LR, Porter M, et al. Williams syndrome. Nat Rev Dis Primers. 2021;7:42.

  • Barak B, Feng G. Neurobiology of social behavior abnormalities in autism and Williams syndrome. Nat Neurosci. 2016;19:647–55.


    Google Scholar
     

  • Zanella M, Vitriolo A, Andirko A, Martins PT, Sturm S, O’Rourke T, et al. Dosage analysis of the 7q11.23 Williams region identifies BAZ1B as a major human gene patterning the modern human face and underlying self-domestication. Sci Adv. 2019;5:eaaw7908.


    Google Scholar
     

  • Cha SG, Song MK, Lee SY, Kim GB, Kwak JG, Kim WH, et al. Long-term cardiovascular outcome of Williams syndrome. Congenit Heart Dis. 2019;14:684–90.


    Google Scholar
     

  • Del Pasqua A, Rinelli G, Toscano A, Iacobelli R, Digilio C, Marino B, et al. New findings concerning cardiovascular manifestations emerging from long-term follow-up of 150 patients with the Williams-Beuren-Beuren syndrome. Cardiol Young-. 2009;19:563–7.


    Google Scholar
     

  • Collins RT II. Cardiovascular disease in Williams syndrome. Curr Opin Pediatr. 2018;30:609–15.


    Google Scholar
     

  • Pober BR, Wang E, Caprio S, Petersen KF, Brandt C, Stanley T, et al. High prevalence of diabetes and pre-diabetes in adults with Williams syndrome. Am J Med Genet Part C: Semin Med Genet. 2010;154C:291–8.


    Google Scholar
     

  • Andersson SA, Olsson AH, Esguerra JLS, Heimann E, Ladenvall C, Edlund A, et al. Reduced insulin secretion correlates with decreased expression of exocytotic genes in pancreatic islets from patients with type 2 diabetes. Mol Cell Endocrinol. 2012;364:36–45.


    Google Scholar
     

  • Frangiskakis JM, Ewart AK, Morris CA, Mervis CB, Bertrand J, Robinson BF, et al. LIM-kinase1 Hemizygosity Implicated in Impaired Visuospatial Constructive Cognition. Cell. 1996;86:59–69.


    Google Scholar
     

  • Greiner de Magalhães C, Pitts CH, Mervis CB. Executive function as measured by the Behavior Rating Inventory of Executive Function-2: children and adolescents with Williams syndrome. J Intellect Disabil Res. 2022;66:94–107.


    Google Scholar
     

  • Mervis CB, John AE. Cognitive and behavioral characteristics of children with Williams syndrome: Implications for intervention approaches. Am J Med Genet Part C: Semin Med Genet. 2010;154C:229–48.


    Google Scholar
     

  • Miezah D, Porter M, Rossi A, Kazzi C, Batchelor J, Reeve J. Cognitive profile of young children with Williams syndrome. J Intellect Disabil Res. 2021;65:784–94.


    Google Scholar
     

  • Meyer-Lindenberg A, Mervis CB, Faith Berman K. Neural mechanisms in Williams syndrome: a unique window to genetic influences on cognition and behaviour. Nat Rev Neurosci. 2006;7:380–93.


    Google Scholar
     

  • Morris CA, Braddock SR, Council On G, Chen E, Trotter TL, Berry SA, et al. Health care supervision for children with Williams Syndrome. Pediatrics. 2020;145:2019–3761.


    Google Scholar
     

  • Martens MA, Wilson SJ, Reutens DC. Research Review: Williams syndrome: a critical review of the cognitive, behavioral, and neuroanatomical phenotype. J Child Psychol Psychiatry. 2008;49:576–608.


    Google Scholar
     

  • Sanders StephanJ, Ercan-Sencicek AG, Hus V, Luo R, Murtha MichaelT, Moreno-De-Luca D, et al. Multiple recurrent De Novo CNVs, Including duplications of the 7q11.23 Williams Syndrome Region, are strongly associated with Autism. Neuron. 2011;70:863–85.


    Google Scholar
     

  • Crespi BJ, Procyshyn TL. Williams syndrome deletions and duplications: Genetic windows to understanding anxiety, sociality, autism, and schizophrenia. Neurosci Biobehav Rev. 2017;79:14–26.


    Google Scholar
     

  • Mulle JG, Pulver AE, McGrath JA, Wolyniec PS, Dodd AF, Cutler DJ, et al. Reciprocal duplication of the Williams-Beuren Syndrome deletion on chromosome 7q11.23 is associated with Schizophrenia. Biol Psychiatry. 2014;75:371–7.


    Google Scholar
     

  • Barak B, Zhang Z, Liu Y, Nir A, Trangle SS, Ennis M, et al. Neuronal deletion of Gtf2i, associated with Williams syndrome, causes behavioral and myelin alterations rescuable by a remyelinating drug. Nat Neurosci. 2019;22:700–8.


    Google Scholar
     

  • Strong E, Butcher DT, Singhania R, Mervis CB, Morris CA, Carvalho DD, et al. Symmetrical dose-dependent DNA-methylation profiles in children with deletion or duplication of 7q11.23. Am J Hum Genet. 2015;97:216–27.


    Google Scholar
     

  • Kimura R, Lardenoije R, Tomiwa K, Funabiki Y, Nakata M, Suzuki S, et al. Integrated DNA methylation analysis reveals a potential role for ANKRD30B in Williams syndrome. Neuropsychopharmacology. 2020;45:1627–36.


    Google Scholar
     

  • Nir A, Barak B. White matter alterations in Williams syndrome related to behavioral and motor impairments. Glia. 2021;69:5–19.


    Google Scholar
     

  • Grad M, Nir A, Levy G, Trangle SS, Shapira G, Shomron N, et al. Altered white matter and microRNA expression in a murine model related to Williams Syndrome suggests that miR-34b/c affects brain development via Ptpru and Dcx Modulation. Cells. 2022;11:158.


    Google Scholar
     

  • Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23:781–3.


    Google Scholar
     

  • Bird A. Perceptions of epigenetics. Nature. 2007;447:396–8.


    Google Scholar
     

  • Nott A, Holtman IR, Coufal NG, Schlachetzki JCM, Yu M, Hu R, et al. Brain cell type–specific enhancer–promoter interactome maps and disease-risk association. Science. 2019;366:1134.


    Google Scholar
     

  • Tsankova N, Renthal W, Kumar A, Nestler EJ. Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci. 2007;8:355–67.


    Google Scholar
     

  • Cho KS, Elizondo LI, Boerkoel CF. Advances in chromatin remodeling and human disease. Curr Opin Genet Dev. 2004;14:308–15.


    Google Scholar
     

  • Kadoch C, Crabtree GR. Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics. Sci Adv. 2015;1:e1500447.


    Google Scholar
     

  • Culver-Cochran AE, Chadwick BP. Loss of WSTF results in spontaneous fluctuations of heterochromatin formation and resolution, combined with substantial changes to gene expression. BMC Genomics. 2013;14:740.


    Google Scholar
     

  • Jangani M, Poolman TM, Matthews L, Yang N, Farrow SN, Berry A, et al. The Methyltransferase WBSCR22/Merm1 enhances glucocorticoid receptor function and is regulated in lung inflammation and cancer. J Biol Chem. 2014;289:8931–46.


    Google Scholar
     

  • Schosserer M, Minois N, Angerer TB, Amring M, Dellago H, Harreither E, et al. Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan. Nat Commun. 2015;6:6158.


    Google Scholar
     

  • Peña-Hernández R, Marques M, Hilmi K, Zhao T, Saad A, Alaoui-Jamali MA, et al. Genome-wide targeting of the epigenetic regulatory protein CTCF to gene promoters by the transcription factor TFII-I. Proc Natl Acad Sci USA. 2015;112:E677–86.


    Google Scholar
     

  • Lazebnik MB, Tussie-Luna MI, Roy AL. Determination and functional analysis of the consensus binding site for TFII-I family member BEN, implicated in Williams-Beuren syndrome. J Biol Chem. 2008;283:11078–82.


    Google Scholar
     

  • Makeyev AV, Bayarsaihan D. ChIP-Chip Identifies SEC23A, CFDP1, and NSD1 as TFII-I Target Genes in Human Neural Crest Progenitor Cells. Cleft Palate Craniofac J. 2013;50:347–50.


    Google Scholar
     

  • Bayarsaihan D, Makeyev AV, Enkhmandakh B. Epigenetic modulation by TFII-I during embryonic stem cell differentiation. J Cell Biochem. 2012;113:3056–60.


    Google Scholar
     

  • Bayarsaihan D. What role does TFII-I have to play in epigenetic modulation during embryogenesis? Epigenomics. 2013;5:9–11.


    Google Scholar
     

  • Roy AL. Role of the multifunctional transcription factor TFII-I in DNA damage repair. DNA Repair. 2021;106:103175.


    Google Scholar
     

  • Makeyev AV, Enkhmandakh B, Hong SH, Joshi P, Shin DG, Bayarsaihan D. Diversity and complexity in chromatin recognition by TFII-I transcription factors in pluripotent embryonic stem cells and embryonic tissues. PLoS One. 2012;7:e44443.


    Google Scholar
     

  • Tussié-Luna MI, Bayarsaihan D, Seto E, Ruddle FH, Roy AL. Physical and functional interactions of histone deacetylase 3 with TFII-I family proteins and PIASxβ. Proc Natl Acad Sci. 2002;99:12807–12.


    Google Scholar
     

  • Crusselle-Davis VJ, Zhou Z, Anantharaman A, Moghimi B, Dodev T, Huang S, et al. Recruitment of coregulator complexes to the β-globin gene locus by TFII-I and upstream stimulatory factor. FEBS J. 2007;274:6065–73.


    Google Scholar
     

  • Hakimi M-A, Dong Y, Lane WS, Speicher DW, Shiekhattar R. A candidate X-linked mental retardation gene is a component of a new family of Histone Deacetylase-containing complexes. J Biol Chem. 2003;278:7234–9.


    Google Scholar
     

  • Pacaud R, Sery Q, Oliver L, Vallette FM, Tost J, Cartron P-F. DNMT3L interacts with transcription factors to target DNMT3L/DNMT3B to specific DNA sequences: Role of the DNMT3L/DNMT3B/p65-NFκB complex in the (de-)methylation of TRAF1. Biochimie. 2014;104:36–49.


    Google Scholar
     

  • Greenberg MVC, Bourc’his D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol. 2019;20:590–607.


    Google Scholar
     

  • Yao B, Christian KM, He C, Jin P, Ming G-l, Song H. Epigenetic mechanisms in neurogenesis. Nat Rev Neurosci. 2016;17:537–49.


    Google Scholar
     

  • Guo H, Zhu P, Yan L, Li R, Hu B, Lian Y, et al. The DNA methylation landscape of human early embryos. Nature. 2014;511:606–10.


    Google Scholar
     

  • Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14:204–20.


    Google Scholar
     

  • Moyon S, Huynh JL, Dutta D, Zhang F, Ma D, Yoo S, et al. Functional characterization of DNA methylation in the oligodendrocyte lineage. Cell Rep. 2016;15:748–60.


    Google Scholar
     

  • Liu J, Casaccia P. Epigenetic regulation of oligodendrocyte identity. Trends Neurosci. 2010;33:193–201.


    Google Scholar
     

  • Liu J, Moyon S, Hernandez M, Casaccia P. Epigenetic control of oligodendrocyte development: adding new players to old keepers. Curr Opin Neurobiol. 2016;39:133–8.


    Google Scholar
     

  • Aref-Eshghi E, Rodenhiser DI, Schenkel LC, Lin H, Skinner C, Ainsworth P, et al. Genomic DNA methylation signatures enable concurrent diagnosis and clinical genetic variant classification in neurodevelopmental syndromes. Am J Hum Genet. 2018;102:156–74.


    Google Scholar
     

  • Corley MJ, Vargas-Maya N, Pang APS, Lum-Jones A, Li D, Khadka V, et al. Epigenetic delay in the neurodevelopmental trajectory of DNA methylation states in autism spectrum disorders. Front Genet. 2019;10:907.


    Google Scholar
     

  • Godler DE, Amor DJ. DNA methylation analysis for screening and diagnostic testing in neurodevelopmental disorders. Essays Biochem. 2019;63:785–95.


    Google Scholar
     

  • Moyon S, Ma D, Huynh JL, Coutts DJC, Zhao C, Casaccia P, et al. Efficient remyelination requires DNA methylation. eNeuro. 2017;4:ENEURO.0336-16.2017.


    Google Scholar
     

  • Moyon S, Casaccia P. DNA methylation in oligodendroglial cells during developmental myelination and in disease. Neurogenesis (Austin). 2017;4:e1270381.


    Google Scholar
     

  • Liu J, Magri L, Zhang F, Marsh NO, Albrecht S, Huynh JL, et al. Chromatin landscape defined by repressive histone methylation during oligodendrocyte differentiation. J Neurosci. 2015;35:352–65.


    Google Scholar
     

  • Huynh JL, Casaccia P. Defining the chromatin landscape in demyelinating disorders. Neurobiol Dis. 2010;39:47–52.


    Google Scholar
     

  • Liu J, Sandoval J, Doh ST, Cai L, López-Rodas G, Casaccia P. Epigenetic modifiers are necessary but not sufficient for reprogramming non-myelinating cells into myelin gene-expressing cells. PLoS One. 2010;5:e13023.


    Google Scholar
     

  • Jang HS, Shin WJ, Lee JE, Do JT. CpG and non-CpG methylation in epigenetic gene regulation and brain function. Genes. 2017;8:148.


    Google Scholar
     

  • Wang Z, Tang B, He Y, Jin P. DNA methylation dynamics in neurogenesis. Epigenomics. 2016;8:401–14.


    Google Scholar
     

  • Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M, et al. Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics. 2011;6:692–702.


    Google Scholar
     

  • Ladd-Acosta C, Hansen KD, Briem E, Fallin MD, Kaufmann WE, Feinberg AP. Common DNA methylation alterations in multiple brain regions in autism. Mol Psychiatry. 2014;19:862–71.


    Google Scholar
     

  • Numata S, Ye T, Herman M, Lipska BK. DNA methylation changes in the postmortem dorsolateral prefrontal cortex of patients with schizophrenia. Front Genet. 2014;5:280.


    Google Scholar
     

  • Veyrac A, Besnard A, Caboche J, Davis S, Laroche S. Chapter Four – The Transcription Factor Zif268/Egr1, Brain Plasticity, and Memory, in Progress in Molecular Biology and Translational Science, ZU Khan and EC Muly, Editors. 2014, Academic Press. 89–129.

  • O’Donovan KJ, Tourtellotte WG, Millbrandt J, Baraban JM. The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends Neurosci. 1999;22:167–73.


    Google Scholar
     

  • Bacon C, Rappold GA. The distinct and overlapping phenotypic spectra of FOXP1 and FOXP2 in cognitive disorders. Hum Genet. 2012;131:1687–98.


    Google Scholar
     

  • Lee B-K, Iyer VR. Genome-wide studies of CCCTC-binding Factor (CTCF) and cohesin provide insight into chromatin structure and regulation. J Biol Chem. 2012;287:30906–13.


    Google Scholar
     

  • Semick SA, Bharadwaj RA, Collado-Torres L, Tao R, Shin JH, Deep-Soboslay A, et al. Integrated DNA methylation and gene expression profiling across multiple brain regions implicate novel genes in Alzheimerʼs disease. Acta Neuropathol. 2019;137:557–69.

  • Marin-Husstege M, He Y, Li J, Kondo T, Sablitzky F, Casaccia-Bonnefil P. Multiple roles of Id4 in developmental myelination: Predicted outcomes and unexpected findings. Glia. 2006;54:285–96.


    Google Scholar
     

  • Kondo T, Raff M. The Id4 HLH protein and the timing of oligodendrocyte differentiation. EMBO J. 2000;19:1998–2007.


    Google Scholar
     

  • Guillemain A, Laouarem Y, Cobret L, Štefok D, Chen W, Bloch S, et al. LINGO family receptors are differentially expressed in the mouse brain and form native multimeric complexes. FASEB J. 2020;34:13641–53.


    Google Scholar
     

  • Mi S, Hu B, Hahm K, Luo Y, Kam Hui ES, Yuan Q, et al. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat Med. 2007;13:1228–33.


    Google Scholar
     

  • Mi S, Miller RH, Lee X, Scott ML, Shulag-Morskaya S, Shao Z, et al. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci. 2005;8:745–51.


    Google Scholar
     

  • Chen Y, Pal B, Visvader JE, Smyth GK. Differential methylation analysis of reduced representation bisulfite sequencing experiments using edgeR. F1000Research. 2017;6:2055.


    Google Scholar
     

  • Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466:253–7.


    Google Scholar
     

  • Spindola LM, Santoro ML, Pan PM, Ota VK, Xavier G, Carvalho CM, et al. Detecting multiple differentially methylated CpG sites and regions related to dimensional psychopathology in youths. Clin Epigenetics. 2019;11:146.


    Google Scholar
     

  • Jeong H, Mendizabal I, Berto S, Chatterjee P, Layman T, Usui N, et al. Evolution of DNA methylation in the human brain. Nat Commun. 2021;12:2021.


    Google Scholar
     

  • Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–89.


    Google Scholar
     

  • Roth RB, Hevezi P, Lee J, Willhite D, Lechner SM, Foster AC, et al. Gene expression analyses reveal molecular relationships among 20 regions of the human CNS. Neurogenetics. 2006;7:67–80.


    Google Scholar
     

  • Lin A, Wang RT, Ahn S, Park CC, Smith DJ. A genome-wide map of human genetic interactions inferred from radiation hybrid genotypes. Genome Res. 2010;20:1122–32.


    Google Scholar
     

  • Beckmann AM, Wilce PA. Egr transcription factors in the nervous system. Neurochemistry Int. 1997;31:477–510.


    Google Scholar
     

  • Kim SH, Song JY, Joo EJ, Lee KY, Shin SY, Lee YH, et al. Genetic association of the EGR2 gene with bipolar disorder in Korea. Exp Mol Med. 2012;44:121–9.


    Google Scholar
     

  • Morris ME, Viswanathan N, Kuhlman S, Davis FC, Weitz CJ. A screen for genes induced in the suprachiasmatic nucleus by light. Science. 1998;279:1544–7.


    Google Scholar
     

  • Hu VW, Frank BC, Heine S, Lee NH, Quackenbush J. Gene expression profiling of lymphoblastoid cell lines from monozygotic twins discordant in severity of autism reveals differential regulation of neurologically relevant genes. BMC Genomics. 2006;7:118.


    Google Scholar
     

  • Wang T, Xiong J-Q. The orphan nuclear receptor TLX/NR2E1 in neural stem cells and diseases. Neurosci Bull. 2016;32:108–14.


    Google Scholar
     

  • Zhang C-L, Zou Y, He W, Gage FH, Evans RM. A role for adult TLX-positive neural stem cells in learning and behaviour. Nature. 2008;451:1004–7.


    Google Scholar
     

  • Kumar RA, McGhee KA, Leach S, Bonaguro R, Maclean A, Aguirre-Hernandez R, et al. Initial association of NR2E1 with bipolar disorder and identification of candidate mutations in bipolar disorder, schizophrenia, and aggression through resequencing. Am J Med Genet Part B: Neuropsychiatr Genet. 2008;147B:880–9.


    Google Scholar
     

  • O’Leary JD, Kozareva DA, Hueston CM, O’Leary OF, Cryan JF, Nolan YM. The nuclear receptor Tlx regulates motor, cognitive and anxiety-related behaviours during adolescence and adulthood. Behav Brain Res. 2016;306:36–47.


    Google Scholar
     

  • Yamakawa H, Cheng J, Penney J, Gao F, Rueda R, Wang J, et al. The Transcription Factor Sp3 cooperates with HDAC2 to regulate synaptic function and plasticity in neurons. Cell Rep. 2017;20:1319–34.


    Google Scholar
     

  • Thumfart KM, Jawaid A, Bright K, Flachsmann M, Mansuy IM. Epigenetics of childhood trauma: Long term sequelae and potential for treatment. Neurosci Biobehav Rev. 2022;132:1049–66.


    Google Scholar
     

  • Day JJ, Kennedy AJ, Sweatt JD. DNA Methylation and its implications and accessibility for neuropsychiatric therapeutics. Annu Rev Pharmacol Toxicol. 2015;55:591–611.


    Google Scholar
     

  • Meaney MJ, Szyf M. Environmental programming of stress responses through DNA methylation: life at the interface between a dynamic environment and a fixed genome. Dialogues Clin Neurosci. 2005;7:103–23.


    Google Scholar
     

  • Rajarajan P, Gil SE, Brennand KJ, Akbarian S. Spatial genome organization and cognition. Nat Rev Neurosci. 2016;17:681–91.


    Google Scholar
     

  • Kempfer R, Pombo A. Methods for mapping 3D chromosome architecture. Nat Rev Genet. 2020;21:207–26.


    Google Scholar
     

  • Bernstein BE, Stamatoyannopoulos Ja, Costello Jf, Ren B, Milosavljevic A, Meissner A, et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol. 2010;28:1045–8.


    Google Scholar
     

  • Irimia M, Weatheritt RJ, Ellis JD, Parikshak NN, Gonatopoulos-Pournatzis T, Babor M, et al. A highly conserved program of neuronal microexons is misregulated in autistic brains. Cell. 2014;159:1511–23.


    Google Scholar
     

  • Chailangkarn T, Trujillo CA, Freitas BC, Hrvoj-Mihic B, Herai RH, Yu DX, et al. A human neurodevelopmental model for Williams syndrome. Nature. 2016;536:338–43.


    Google Scholar
     

  • Zhou J, Sears RL, Xing X, Zhang B, Li D, Rockweiler NB, et al. Tissue-specific DNA methylation is conserved across human, mouse, and rat, and driven by primary sequence conservation. BMC Genomics. 2017;18:724.


    Google Scholar
     

  • Lokk K, Modhukur V, Rajashekar B, Märtens K, Mägi R, Kolde R, et al. DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome Biol. 2014;15:3248.


    Google Scholar
     

  • Andrews SV, Ellis SE, Bakulski KM, Sheppard B, Croen LA, Hertz-Picciotto I, et al. Cross-tissue integration of genetic and epigenetic data offers insight into autism spectrum disorder. Nat Commun. 2017;8:1011.


    Google Scholar
     

  • Pott S, Lieb JD. What are super-enhancers? Nat Genet. 2015;47:8–12.


    Google Scholar
     

  • Simons M, Trajkovic K. Neuron-glia communication in the control of oligodendrocyte function and myelin biogenesis. J Cell Sci. 2006;119:4381–9.


    Google Scholar
     

  • Barres BA, Schmid R, Sendnter M, Raff MC. Multiple extracellular signals are required for long-term oligodendrocyte survival. Development. 1993;118:283–95.


    Google Scholar
     

  • Fields RD, Stevens-Graham B. New insights into neuron-glia communication. Science. 2002;298:556–62.


    Google Scholar
     

  • Mitew S, Hay CM, Peckham H, Xiao J, Koenning M, Emery B. Mechanisms regulating the development of oligodendrocytes and central nervous system myelin. Neuroscience. 2014;276:29–47.


    Google Scholar
     

  • Bilican B, Fiore-Heriche C, Compston A, Allen ND, Chandran S. Induction of Olig2+ precursors by FGF involves BMP signalling blockade at the smad level. PLOS ONE. 2008;3:e2863.


    Google Scholar
     

  • Michailov Galin V, Sereda Michael W, Brinkmann Bastian G, Fischer Tobias M, Haug B, Birchmeier C, et al. Axonal Neuregulin-1 regulates myelin sheath thickness. Science. 2004;304:700–3.


    Google Scholar
     

  • Xiao J, Ferner AH, Wong AW, Denham M, Kilpatrick TJ, Murray SS. Extracellular signal-regulated kinase 1/2 signaling promotes oligodendrocyte myelination in vitro. J Neurochemistry. 2012;122:1167–80.


    Google Scholar
     

  • Xiao J, Wong AW, Willingham MM, van den Buuse M, Kilpatrick TJ, Murray SS. Brain-derived neurotrophic factor promotes central nervous system myelination via a direct effect upon oligodendrocytes. Neurosignals. 2010;18:186–202.


    Google Scholar
     

  • Gendron-Maguire M, Mallo M, Zhang M, Gridley T. Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell. 1993;75:1317–31.


    Google Scholar
     

  • Santagati F, Minoux M, Ren S-Y, Rijli FM. Temporal requirement of Hoxa2 in cranial neural crest skeletal morphogenesis. Development. 2005;132:4927–36.


    Google Scholar
     

  • Tavella S, Bobola N. Expressing Hoxa2 across the entire endochondral skeleton alters the shape of the skeletal template in a spatially restricted fashion. Differentiation. 2010;79:194–202.


    Google Scholar
     

  • Boeckx, C and Benítez-Burraco A, Osteogenesis and neurogenesis: a robust link also for language evolution. Front Cell Neurosci., 2015. 9.

  • Fukushima N, Furuta D, Hidaka Y, Moriyama R, Tsujiuchi T. Post-translational modifications of tubulin in the nervous system. J Neurochemistry. 2009;109:683–93.


    Google Scholar
     

  • Gadadhar S, Alvarez Viar G, Hansen JN, Gong A, Kostarev A, Ialy-Radio C, et al. Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility. Science. 2021;371:6525.


    Google Scholar
     

  • Jang S-W, Srinivasan R, Jones EA, Sun G, Keles S, Krueger C, et al. Locus-wide identification of Egr2/Krox20 regulatory targets in myelin genes. J Neurochemistry. 2010;115:1409–20.


    Google Scholar
     

  • Kuhlbrodt K, Herbarth B, Sock E, Hermans-Borgmeyer I, Wegner M. Sox10, a novel transcriptional modulator in glial cells. J Neurosci. 1998;18:237.


    Google Scholar
     

  • LeBlanc SE, Jang S-W, Ward RM, Wrabetz L, Svaren J. Direct regulation of myelin protein zero expression by the Egr2 transactivator. J Biol Chem. 2006;281:5453–60.


    Google Scholar
     

  • Swanberg SE, Nagarajan RP, Peddada S, Yasui DH, LaSalle JM. Reciprocal co-regulation of EGR2 and MECP2 is disrupted in Rett syndrome and autism. Hum Mol Genet. 2009;18:525–34.


    Google Scholar
     

  • Mager GM, Ward RM, Srinivasan R, Jang S-W, Wrabetz L, Svaren J. Active gene repression by the Egr2-NAB complex during peripheral nerve myelination. J Biol Chem. 2008;283:18187–97.


    Google Scholar
     

  • Le N, Nagarajan R, Wang JYT, Svaren J, LaPash C, Araki T, et al. Nab proteins are essential for peripheral nervous system myelination. Nat Neurosci. 2005;8:932–40.


    Google Scholar
     

  • Okano M, Bell DW, Haber DA, Li E. DNA Methyltransferases Dnmt3a and Dnmt3b are essential for De Novo methylation and mammalian development. Cell. 1999;99:247–57.


    Google Scholar
     

  • Gertz J, Varley KE, Reddy TE, Bowling KM, Pauli F, Parker SL, et al. Analysis of DNA methylation in a three-generation family reveals widespread genetic influence on epigenetic regulation. PLOS Genet. 2011;7:e1002228.


    Google Scholar
     

  • Gölzenleuchter M, Kanwar R, Zaibak M, Al Saiegh F, Hartung T, Klukas J, et al. Plasticity of DNA methylation in a nerve injury model of pain. Epigenetics. 2015;10:200–12.


    Google Scholar
     

  • Nohara K, Nakabayashi K, Okamura K, Suzuki T, Suzuki S, Hata K. Gestational arsenic exposure induces site-specific DNA hypomethylation in active retrotransposon subfamilies in offspring sperm in mice. Epigenetics Chromatin. 2020;13:53.


    Google Scholar
     

  • Voisin A-S, Suarez Ulloa V, Stockwell P, Chatterjee A, Silvestre F, Genome-wide DNA. methylation of the liver reveals delayed effects of early-life exposure to 17-α-ethinylestradiol in the self-fertilizing mangrove rivulus. Epigenetics. 2022;17:473–97.


    Google Scholar
     

  • Baker Frost D, da Silveira W, Hazard ES, Atanelishvili I, Wilson RC, Flume J, et al. Differential DNA methylation landscape in skin fibroblasts from African Americans with systemic Sclerosis. Genes. 2021;12:129.


    Google Scholar
     

  • Raff MC, Miller RH, Noble M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature. 1983;303:390–6.


    Google Scholar
     

  • Raff MC, Abney ER, Fok-Seang J. Reconstitution of a developmental clock in vitro: a critical role for astrocytes in the timing of oligodendrocyte differentiation. Cell. 1985;42:61–9.


    Google Scholar
     

  • Raff MC, Lillien LE, Richardson WD, Burne JF, Noble MD. Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture. Nature. 1988;333:562–5.


    Google Scholar
     

  • Mi S, Lee X, Shao Z, Thill G, Ji B, Relton J, et al. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci. 2004;7:221–8.


    Google Scholar
     

  • Riechmann V, van Crüchten I, Sablitzky F. The expression pattern of Id4, a novel dominant negative helix-loop-helix protein, is distinct from Id1, 1d2 and Id3. Nucleic Acids Res. 1994;22:749–55.


    Google Scholar
     

  • Jen Y, Manova K, Benezra R. Expression patterns of Id1, Id2, and Id3 are highly related but distinct from that of Id4 during mouse embryogenesis. Dev Dyn: Off Publ Am Assoc Anatomists. 1996;207:235–52.


    Google Scholar
     

  • Norton JD, Deed RW, Craggs G, Sablitzky F. Id helix—loop—helix proteins in cell growth and differentiation. Trends Cell Biol. 1998;8:58–65.


    Google Scholar
     

  • Norton JD, Atherton GT. Coupling of cell growth control and apoptosis functions of Id proteins. Mol Cell Biol. 1998;18:2371–81.


    Google Scholar
     

  • Emery B. Regulation of oligodendrocyte differentiation and myelination. Science. 2010;330:779–82.


    Google Scholar
     

  • Plemel JR, Manesh SB, Sparling JS, Tetzlaff W. Myelin inhibits oligodendroglial maturation and regulates oligodendrocytic transcription factor expression. Glia. 2013;61:1471–87.


    Google Scholar
     

  • Huang H-S, Akbarian S. GAD1 mRNA expression and DNA methylation in prefrontal cortex of subjects with Schizophrenia. PLOS ONE. 2007;2:e809.


    Google Scholar
     

  • Tao R, Davis KN, Li C, Shin JH, Gao Y, Jaffe AE, et al. GAD1 alternative transcripts and DNA methylation in human prefrontal cortex and hippocampus in brain development, schizophrenia. Mol Psychiatry. 2018;23:1496–505.


    Google Scholar
     

  • Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ, et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature. 2011;477:171–8.


    Google Scholar
     

  • Levy DR, Tamir T, Kaufman M, Parabucki A, Weissbrod A, Schneidman E, et al. Dynamics of social representation in the mouse prefrontal cortex. Nat Neurosci. 2019;22:2013–22.


    Google Scholar
     

  • Yizhar O, Levy DR. The social dilemma: prefrontal control of mammalian sociability. Curr Opin Neurobiol. 2021;68:67–75.


    Google Scholar
     

  • Chew L-J, Coley W, Cheng Y, Gallo V. Mechanisms of regulation of oligodendrocyte development by p38 Mitogen-activated Protein Kinase. J Neurosci. 2010;30:11011–27.


    Google Scholar
     

  • Liang X, Draghi NA, Resh MD. Signaling from Integrins to Fyn to Rho Family GTPases regulates morphologic differentiation of Oligodendrocytes. J Neurosci. 2004;24:7140.


    Google Scholar
     

  • Chen Y, Wu H, Wang S, Koito H, Li J, Ye F, et al. The oligodendrocyte-specific G protein–coupled receptor GPR17 is a cell-intrinsic timer of myelination. Nat Neurosci. 2009;12:1398–406.


    Google Scholar
     

  • Boda E, Viganò F, Rosa P, Fumagalli M, Labat-Gest V, Tempia F, et al. The GPR17 receptor in NG2 expressing cells: Focus on in vivocell maturation and participation in acute trauma and chronic damage. Glia. 2011;59:1958–73.


    Google Scholar
     

  • Carter CS, Grippo AJ, Pournajafi-Nazarloo H, Ruscio MG, and Porges SW, Oxytocin, vasopressin and sociality, in Progress in Brain Research, ID Neumann and R Landgraf, Editors. 2008, Elsevier. 331–6.

  • Heinrichs M, von Dawans B, Domes G. Oxytocin, vasopressin, and human social behavior. Front Neuroendocrinol. 2009;30:548–57.


    Google Scholar
     

  • Dai L, Carter CS, Ying J, Bellugi U, Pournajafi-Nazarloo H, Korenberg JR. Oxytocin and Vasopressin are dysregulated in williams syndrome, a genetic disorder affecting social behavior. PLOS ONE. 2012;7:e38513.


    Google Scholar
     

  • Meyer-Lindenberg A, Domes G, Kirsch P, Heinrichs M. Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat Rev Neurosci. 2011;12:524–38.


    Google Scholar
     

  • Johnson ZV, Young LJ. Oxytocin and vasopressin neural networks: Implications for social behavioral diversity and translational neuroscience. Neurosci Biobehav Rev. 2017;76:87–98.


    Google Scholar
     

  • Ebstein RP, Knafo A, Mankuta D, Chew SH, Lai PS. The contributions of oxytocin and vasopressin pathway genes to human behavior. Hormones Behav. 2012;61:359–79.


    Google Scholar
     

  • Landgraf R, Neumann ID. Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol. 2004;25:150–76.


    Google Scholar
     

  • Sue Carter C. Neuroendocrine perspectives on social attachment and love. Psychoneuroendocrinology. 1998;23:779–818.


    Google Scholar
     

  • Insel TR. The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron. 2010;65:768–79.


    Google Scholar
     

  • Haas BW and Smith AK, Oxytocin, vasopressin, and Williams syndrome: epigenetic effects on abnormal social behavior. Front Genet., 2015. 6.

  • Bakulski KM, Halladay A, Hu VW, Mill J, Fallin MD. Epigenetic research in neuropsychiatric disorders: the “Tissue Issue”. Curr Behav Neurosci Rep. 2016;3:264–74.


    Google Scholar
     

  • Nestler EJ, Peña CJ, Kundakovic M, Mitchell A, Akbarian S. Epigenetic basis of mental illness. Neuroscientist. 2015;22:447–63.


    Google Scholar
     

  • Tekendo-Ngongang C, Dahoun S, Nguefack S, Gimelli S, Sloan-Béna F, Wonkam A. Challenges in clinical diagnosis of williams-beuren syndrome in sub-saharan africans: case reports from cameroon. Mol Syndromol. 2014;5:287–92.


    Google Scholar
     

  • Lumaka A, Lukoo R, Mubungu G, Lumbala P, Mbayabo G, Mupuala A, et al. Williams-Beuren syndrome: pitfalls for diagnosis in limited resources setting. Clin Case Rep. 2016;4:294–7.


    Google Scholar
     

  • Jühling F, Kretzmer H, Bernhart SH, Otto C, Stadler PF, Hoffmann S. metilene: fast and sensitive calling of differentially methylated regions from bisulfite sequencing data. Genome Res. 2016;26:256–62.


    Google Scholar
     

  • Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–89.


    Google Scholar
     

  • Shen L. Gene Overlap: Test and visualize gene overlaps. 0.99.0. 2013. https://doi.org/10.18129/B9.bioc.GeneOverlap.

    Article 

    Google Scholar
     

  • Zhou Y, Zhou B, Pache L, Chang MA-OX, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523.


    Google Scholar
     

  • Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–26.


    Google Scholar
     

  • Kumar K, Oli A, Hallikeri K, Shilpasree AS, Goni M. An optimized protocol for total RNA isolation from archived formalin-fixed paraffin-embedded tissues to identify the long non-coding RNA in oral squamous cell carcinomas. MethodsX. 2021;9:101602.


    Google Scholar
     

  • Oudelaar AM, Downes DJ, Davies JOJ, Hughes JR. Low-input Capture-C: A chromosome conformation capture assay to analyze chromatin architecture in small numbers of cells. Bio Protoc. 2017;7:e2645.


    Google Scholar
     

  • Splinter E, Grosveld F, de Laat W. 3C technology: analyzing the spatial organization of genomic loci in vivo. Methods Enzymol. 2004;375:493–507.


    Google Scholar
     



  • Source link

    Share

    Leave a Reply

    Your email address will not be published. Required fields are marked *